
Fig. 7 (a) Head; (b) Lion recon; (c) Ramses; (d) Red circular box; (e) Oil pump; and (f) Thai statue. (a‘, c’, e‘, f’)

show zoomed-in images; the scaled Jacobian histograms are shown in the last column. The red bar represents the

minimum scaled Jacobian, and the purple bars are truncated ones due to a higher frequency (≥ 3%).

Given a smooth boundary, we adopt a Gaussian curvature

function and a thickness function to capture and refine

high curvatures and narrow regions on the surface. The

octree is refined to a deeper level as the curvature/

thickness becomes higher/ smaller.

The following two rules are applied to convert the octree

to a strongly balanced one.

Balancing rule: ensures that the level difference between

two neighboring octants is at most one.

Pairing rule: if an octant is subdivided to comply to the

balancing rule, its siblings are subdivided along with it.

The elements outside and in the vicinity of the boundary

surface are removed with coarse and fine criteria.

• Coarse criterion

 A hex element is removed if fmin + 0.1 * fmax < 0 is met.

fmin and fmax represent the minimum and maximum signed

distance functions of the corner points of the hex.

• Fine criterion

 Hexes attached to x are removed iteratively until (ni ×

nj) · nk > 0 for all i, j, k = 0, 1, ..., m - 1 and i ≠ j ≠ k to prevent

elements that will lead to poor scaled Jacobian elements in the

buffer zone (blue and red in Fig. 5).

HybridOctree_Hex: Hybrid Octree-Based Adaptive All-Hexahedral

Mesh Generation with Jacobian Control
Hua Tong, Eni Halilaj, Yongjie Jessica Zhang

Computational Biomodeling Laboratory, Department of Mechanical Engineering, Carnegie Mellon University

Introduction
We introduce "HybridOctree_Hex," a new software

for adaptive all-hexahedral mesh generation. It uses

a hybrid octree approach with Jacobian control for

quality enhancement. Key surface features are

identified from input boundaries to initialize the

octree. Balanced and paired, pre-defined templates

enable direct generation of dual meshes. Elements

outside the boundary are removed to form a core

mesh. The gap between the core mesh and the input

domain is then filled to create the final mesh. Smart

Laplacian smoothing and optimization-based quality

improvement techniques ensure a minimum scaled

Jacobian above 0.5. Our method is robust and

efficient, proven on dozens of complex 3D models

without manual intervention. The mesh results and

source code are available at:

github.com/CMU-CBML/HybridOctree_Hex.

Initializing the Octree and Building A
Strongly Balanced Octree Structure

The all-hex dual mesh contains no hanging nodes.

• Four transition cases for the cutting procedure in 2D.

• Only one transition template is needed (Fig. 3 (e)).

Clearing Buffer Zone

Quality Improvement with Jacobian
Control

We mesh the buffer zone by connecting each boundary point xi

of the core mesh with its closest surface point xi
s to form hex

elements hi, as shown in Fig. 5 (b).

Issue: The resulting elements in the buffer layer may be poor

quality.

Goal: To preserve the positions of boundary points on the

surface while relocating corners of worst-Jacobian elements to

enhance the overall mesh quality.

Solution: Couple optimization with smart Laplacian

smoothing.

 Perform optimization to all the vertices in each iteration.

 Perform smart Laplacian smoothing every 1, 000

iterations on the outmost two layers of vertices to smooth the

surface and prevent getting stuck in local minima.

Detailed solution: The optimization is achieved by

minimizing an energy function consisting of the geometry

fitting, scaled Jacobian and Jacobian terms.

𝐸 = 𝐸𝐺𝐹 − 𝐸𝑆𝐽 − 𝐸𝐽

= ෍

𝑖=0

𝑛𝑣𝑒𝑟𝑡−1

𝑥𝑖 − 𝑥𝑖
𝑠

2
2 − ෍

𝑖=0

𝑚−1

min

𝑆𝐽 ℎ𝑖 − ෍

𝑖=0

𝑛−1

min

𝐽 ℎ𝑖 ,

• nvert: the number of surface vertices

• xi
s: closest surface point to xi, updated every 1, 000 iterations

for faster computation.

• m: the number of positive-Jacobian hexes

• n: the number of negative-Jacobian hexes.

We iteratively minimize E with gradient descent.

𝑥𝑖 → 𝑥𝑖 − 𝛼∇ ቚ𝐸
𝑥𝑖

, 𝑖 = 0, 1, … , 2 × 𝑛𝑣𝑒𝑟𝑡 − 1,

• α = 0.8×10-3 for all tested models.

Optimization tricks:

• All surface points xi are pulled onto xi
s when the geometry

fitting energy is small enough for exact surface reconstruction.

• The scaled Jacobian and Jacobian terms are only applied to

hexes with SJ < threshold εSJ to prevent back-and-forth

coordinate adjustment.

• Optimize with scaled Jacobian value when min J(hi) > 0 to

achieve optimal convergence. Optimizing with Jacobian

instead cannot converge to the optimal position |P0P1| or |▽E|

= 0 and will continue to |P0P1| or |▽E| → -∞ (Fig. 6 (c, e)).

• Optimize with Jacobian instead of scaled Jacobian when

scaled Jacobian is (1) in-differentiable or (2) negative to

prevent gradient explosion (Fig. 6 (b)) or getting stuck in local

minimum (Fig. 6 (d)).

Tab. 1: Mesh time of all the tested models

Numerical Results and Discussion
We run HybridOctree_Hex on a range of complex models without parameter adjustments. Twelve

representative meshes are displayed in Fig. 6 and 7. Our results were computed on a PC equipped

with a 3.6 GHz Intel i7-12700 CPU and 32GB of memory.

Conclusions

Contributions: We introduce HybridOctree_Hex, an advanced software for generating adaptive

all-hex meshes. It efficiently detects surface features, constructs a balanced octree and an all-hex

dual mesh. Our approach is robust, efficient, and automated on dozens of complex 3D models.

Limitations and future work: Future research can explore advanced techniques for feature

detection and machine learning for octree level prediction. Customizing the energy function can

further enhance mesh quality and feature preservation. Partitioning and parallel computing can

allow detecting smaller features in a shorter time.

Balancing rule Pairing rule

Fig. 3 Quadtree transition configurations (a-d) showing the strongly

balanced quadtree, hybrid dual mesh, and the resulting all-quad

mesh after applying the transformation template in (e). There are

two red hanging nodes on each golden transition edge.

Fig. 2 Balancing rule (blue region) and pairing rule (green region).

Fig. 5 (a) Four cases comparing with our prior work. Red hexes are

removed by both methods, green only by the prior, and blue only by

ours. Yellow triangles show normals violating fine criterion. (b) The

buffer layer links core mesh boundary (black) to input surface (red).

Designing Templates and Constructing
All-Hex Dual Mesh

• Five transition cases for the cutting procedure in 3D

 One transition on face (Fig. 4 (a)).

 Four transitions on edge (Fig. 4 (b), (c), (d) and (e)).

Fig. 4 Octree transition configurations (a-e) showing the strongly

balanced octree (first row), hybrid dual mesh (second row), and

the transformation template (third and fourth row).

We detect faces and edges in the strongly balanced octree

and apply templates to generate an all-hex mesh,

eliminating the need for a complex hybrid octree.

• We found the non-manifold criterion inadequate for buffer

zone element quality.

• Key factors are normals around core mesh boundary points.

• This approach is the key to enhancing the buffer zone

element scaled Jacobian to over 0.5.

Fig. 5 (a) A hex with |P0P1|=1 is optimized by moving P0 along 𝑃0𝑃1 in (b,

c) or ▽E in (d, e). The optimum is at dashed green lines. Intervals for

scaled Jacobian are red-shaded. In-differentiable points and valleys are

dashed red lines. (b, d) show scaled Jacobian; (c, e) display Jacobian.

Fig. 6 (a) Bottle1; (b) Bunny; (c) David; (d) Deformed armadillo; (e) Dragon stand; and (f) Gargoyle. (a‘, b’,

c‘, d’, d‘’, e‘) show zoomed-in images; (c’) shows a comparison between our mesh and Gao 2019 mesh, which

generates a hole at the thin region; the scaled Jacobian histograms are shown in the last column. The red bar

represents the minimum scaled Jacobian and purple bars are truncated ones due to a higher frequency (≥ 3%).

Model Time (s) Model Time (s) Model Time (s)

Bottle1 218 Bunny 358 David 10450

Deformed

Armadillo
3, 431

Dragon

Stand2
2, 052 Gargoyle 8, 769

Head 444 Lion Recon 2, 046 Oil Pump 9, 742

Ramses 713
Red Circular

Box
7, 547 Thai Statue 1, 845

Fig. 1 HybridOctree_Hex overview. (a) Initial octree; (b) Strongly

balanced octree; (c) Construct all-hex dual mesh using pre-

defined templates; (d) Core mesh; (e) Meshing the buffer zone

(yellow) with geometric fitting and Jacobian control.

Differences compared to previous methods

• Previous methods:

 Removing non-manifold core mesh surface hexes.

 Applying geometric flow to boost overall mesh quality.

• Our approach:

 Removing core mesh surface hexes with the fine criterion.

 Using combined scaled Jacobian and Jacobian in

gradient-based optimization to avoid local minima.

 Leading to notably high min scaled Jacobian > 0.5.

HybridOctree_Hex: Hybrid Octree-Based Adaptive All-Hexahedral Mesh Generation with Jacobian Control
Hua Tong, Eni Halilaj, Yongjie Jessica Zhang

Computational Biomodeling Laboratory, Department of Mechanical Engineering, Carnegie Mellon University

Balancing rule Pairing rule

(a) Initializing Octree
Refinement criteria:

(1) High curvature

(2) Small thickness

(b) Building Strongly Balanced Octree (c) Constructing All-Hex Dual Mesh
Five transition cases for the cutting procedure in 3D:

(1) One transition case on face

(2) Four transition cases on edge

(d) Clearing Buffer Zone
Remove outside element with coarse and

improved fine criteria.

(e) Quality Improvement with

Jacobian Control
(1) Optimize a new energy function with gradient descent

𝐸 = 𝐸𝐺𝐹 − 𝐸𝑆𝐽 − 𝐸𝐽

= ෍

𝑖=0

𝑛𝑣𝑒𝑟𝑡−1

𝑥𝑖 − 𝑥𝑖
𝑠

2
2 − ෍

𝑖=0

𝑚−1

min

𝑆𝐽 ℎ𝑖 − ෍

𝑖=0

𝑛−1

min

𝐽 ℎ𝑖

(2) Couple with Laplacian smoothing to

 Smooth the surface

 Prevent getting stuck in local minima

We obtain notably high minimum scaled Jacobian > 0.5

(e) Numerical Results
Tested on dozens of complex models without intervention

All mesh results and source code are available at

github.com/CMU-CBML/HybridOctree_Hex

Gargoyle

Oil Pump

	Slide 1
	f62cd34c-ed82-4632-bacb-d6f9fafbf9d9.pdf
	Slide 1

