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Abstract
Mesh regularization methods are employed in computational
simulations, particularly when dealing with problems mod-
eled using the Lagrangian formalism. Indeed solving com-
plex engineering problems using the Euler equations within a
Lagrangian framework presents a critical challenge. In com-
plex engineering applications that involve simulating strong
shock waves, the computational mesh can deform signifi-
cantly, closely tracking the movements of materials or flu-
ids. In such cases, deteriorated or tangled meshes may com-
promise the integrity of the simulation. Combining regu-
larization methods with Lagrangian simulation becomes in-
dispensable, leading to the development of the Arbitrary
Lagrangian-Eulerian (ALE) framework. In this work, we
propose a regularization method for block-structured meshes
which could be used within a 3D ALE code. Our proposed
method aims to regularize Lagrangian mesh while preserv-
ing the interesting physical characteristics of the Lagrangian
mesh using a 3D regularization method. This method is
based on a weighted line sweeping method which can main-
tain non-uniform characteristics of the Lagrangian mesh.

1 Introduction.

Mesh regularization methods are often employed
in computational simulations, particularly when dealing
with problems modeled using the Lagrangian formal-
ism. Solving the gas dynamics equations under the La-
grangian formalism is particularly appropriate for simu-
lating complex engineering problems with strong shock
waves. In simulations where the mesh tracks the move-
ment of materials or fluids, such as in hydrodynamics or
fluid dynamics simulations, the mesh can become dis-
torted and tangled over time. On the other hand, the
Eulerian description, with its fixed mesh, can handle sig-
nificant distortions more easily but leads to strong nu-
merical diffusion. The Arbitrary Lagrangian-Eulerian
(ALE) formulation combines the benefits of both La-
grangian and Eulerian methods. It allows the mesh to
move with the material during the Lagrangian phase,
and then a rezoning step is initiated to construct a
new regularized mesh using the nodes moved during La-
grangian phase. Regularization method [1] is the corner-
stone of the ALE method as it helps restore and main-
tain the quality of the mesh. Regularization ensures
the accuracy and reliability of the simulation results.
Indeed, as materials or fluids move and deform within
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the computational domain, mesh elements can become
twisted or overlapped, leading to tangled or distorted
cells. Regularization methods aim to identify and re-
solve these tangled elements, allowing the simulation to
continue smoothly. Distorted meshes may also affect
the numerical stability of simulations. Regularization
helps stabilize the solution, preventing numerical issues
that can arise from poorly conditioned meshes. In sim-
ulations that involve tracking physical features such as
shock waves, regularization methods aim to maintain
the integrity of these features. This is crucial for ac-
curately capturing the physics of the problem. Overall,
the use of regularization methods is essential for ensur-
ing the accuracy, stability, and efficiency of simulations,
particularly in scenarios where strong mesh deformation
or tangled mesh may occur.

The numerical resolution is usually based on an in-
direct ALE strategy. More precisely, using such strat-
egy, the first ingredient consists in solving the set of Eu-
ler equations in the Lagrangian framework. During the
Lagrangian step, where the mesh follows the fluid veloc-
ity, the mesh quality may be considerably deteriorated.
A regularization step intends to improve it while keep-
ing some interesting features of the Lagrangian phase.
Here starts a rezoning step in which, from the nodes
moved during the Lagrangian phase, a new regularized
grid is built up. The overall indirect ALE strategy is
displayed in fig. 1.

Lagrangian step Regularization step

Figure 1: Indirect ALE strategy.

This work aims to present a regularization method
for 3D block-structured meshes. The mesh regular-
ization method used in this study is inspired by the
Line-Sweeping regularization method introduced by Jin
YAO [11, 10]. This iterative method regularizes each
node with a given geometrical rule in a structured sten-
cil consisting of the node itself and its neighboring
nodes. As pointed out in [11, 10], the Line-Sweeping
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regularization method gives similar results compared
to other regularization methods (Laplacian smoothing,
equi-potential relaxation or angle-based method). In
addition, it prevents grid attraction effects [3], and pro-
duces good mesh quality on a concave boundary or at
irregular connectivity point. This method as also been
used to rezone 2D meshes in the context of aerothermo-
dynamic reentry simulation which involves simulating
the aerodynamic conditions and ablation experienced
by a vehicle during its reentry into the Earth’s atmo-
sphere [7].

In this paper, we introduce a modified version of the
equal space method introduced in [11] for 3D meshes.
The main advance lies in the introduction of a weighted
line sweeping method, which intends to preserve the
interesting physical features of the Lagrangian mesh.
This new version allows the regularization of meshes
where points are not evenly spaced. In such cases, the
result will not converge to the classical solution given
by Laplacian smoothing or by the original equal space
method. This aspect is of great interest in the context
of ALE simulations.

The paper is structured into two main sections. In
a first part, the regularization method is detailed. This
method is implemented in a 3D code from the ideas pro-
posed in [11, 10]. In particular, it demonstrates how a
purely geometrical regularization methodology can ef-
fectively handle the regularization of highly deformed
meshes. In this part, some regularization examples are
displayed to show the efficiency of the method even in
the case of 3D tangled mesh. This point out the flex-
ibility of the method which handles the regularization
of very strongly deformed meshes. In a second part, we
introduce a weighted algorithm. This algorithm aims
to further enhance the adaptability of the regulariza-
tion method to Lagrangian hydrodynamics. To achieve
this, we introduce a weighting mechanism to control the
distribution of nodes in the final regularized mesh. This
modified regularization approach is specifically designed
to preserve the good properties of the Lagrangian sim-
ulation.

2 Regularization method

The mesh regularization method used in this study
is inspired by the Line-Sweeping regularization method
introduced in [10, 11]. The Line-Sweeping method is
a local iterative geometric method for mesh regulariza-
tion. The aim is to move each node according to the
position of its neighbours until the regularization con-
verges. The proposed method transforms the regular-
ization of a multi-dimensional stencil into a sequence
of one-dimensional stencil regularization steps. Since
the methodology is devoted to 3D structured mesh, the

index (i,j,k) are introduced to represent the three di-
mensions of space. A 2D stencil is a set of nodes with
one dimension i, j or k fixed. A 1D stencil is a set of
nodes with two dimensions (i,j), (i,k) or (j,k) fixed.

2.1 Line Sweeping Method
For each 1D stencil, to calculate the regularized

position at iteration m + 1 of the node xm
i drawn in

blue in fig. 2, it is sufficient to move the new node xm+1
i

in red at equal distance from the neighbouring nodes
xm
i−1 and xm

i+1 while following the geometry of the initial
stencil.

xm
i−1

xm
i

xm
i+1

e1

e2xm+1
i

lm

2

lm

2

Figure 2: Regularization of a 1D stencil using equal-
space-point method.

At first, the length lm of the branch is computed as

lm = lm1 + lm2 , lm1 = |xm
i − xm

i−1| and
lm2 = |xm

i − xm
i+1|.

The index i is omitted for simplicity. Then the regu-
larized point xm+1

i named equal-space-point is defined
as

xm+1
i =(

xm
i−1 +

lm

2
e1

)
δ{ lm

2 ≤lm1 } +

(
xm
i+1 +

lm

2
e2

)
δ{ lm

2 <lm2 }

where

e1 =
xm
i − xm

i−1

|xm
i − xm

i−1|
, e2 =

xm
i − xm

i+1

|xm
i − xm

i+1|
,

and

δ{ lm

2 ≤l1} =

{
1, if lm

2 ≤ lm1
0, otherwise

,

δ{ lm

2 <l2} =

{
1, if lm

2 < lm2
0, otherwise

This choice offers the advantage of aligning the
rezoned node with the initial geometry of the stencil,
in contrast to the arithmetic average of nodes xm

i−1 and
xm
i+1. The regularization of a 1D stencil, as depicted

in fig. 2, will be applied in the case of edges present in
boundary conditions. For the sake of simplicity, the
iteration index m is omitted in the following discussion
as it is clear that the new position m + 1 is computed
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from the previous position at iteration m. In a 2D
stencil, every triplet of points corresponds to its own
equal-space-point. Consequently, in both directions
of the stencil, a first relaxed set of points is calculated.
As we are in a 2D stencil, six points are calculated:
xj−1, xj , and xj+1 in one direction, and xk−1, xk,
and xk+1 in the other direction. These points form
two additional 1D stencils, denoted as xj−1,xj ,xj+1

and xk−1,xk,xk+1. They are illustrated in fig. 3.
Again, another relaxed set of two new points x̃j and
x̃k are computed as the equal-space-point of the stencils
{xj−1,xj ,xj+1} and {xk−1,xk,xk+1}. The final equal-
space-point x in a 2D stencil is simply computed as the
arithmetic average of x̃j and x̃k as displayed in fig. 4.

x =
1

2
(x̃j + x̃k).

The method depicted in fig. 3 and fig. 4 is also ap-
plied to planar faces encountered in boundary condi-
tions. It’s important to note that only boundary condi-
tions featuring planar faces are regularized in the cases
presented in this paper.

xk−1

xk

xk+1

xj−1 xj xj+1

Figure 3: Regularization of a 2D stencil : green and
red points correspond to 1D equal-space-points in both

directions.

x̃j

x̃k

x

Figure 4: Regularization of a 2D stencil : green point
x̃j and red point x̃k are respectively the 1D

equal-space-point of the green branch and of the red
branch.

This method naturally extends to 3D since each
direction has three 2D stencils, as displayed in fig. 5.
For each direction, three 2D equal-space-points methods
are applied, resulting in a 1D stencil in each direction.
They will respectively be denoted as {xi,1, xi,2, xi,3},
{xj,1, xj,2, xj,3} and {xk,1, xk,2, xk,3} for the i, j, and
k directions. These 1D stencils are displayed in fig. 6.

−→
i

−→
j

−→
k

Figure 5: 2D stencils in each direction used for 3D
regularization.

Again, the equal-space-points x̃i, x̃j and x̃k of these
1D stencils are computed. The central node x displayed
in fig. 7 is finally positioned as the arithmetic mean of
x̃i, x̃j and x̃k.

x =
1

3
(x̃i + x̃j + x̃k).

2.2 Regularization of cubic and cylindrical do-
main

To evaluate the efficacy of the regularization
method, we conduct experiments involving the manip-
ulation of nodes within an initially uniformly meshed
structure. We generate perturbed meshes through the
introduction of random deformations into these initially
uniform meshes. The results presented here are for a
small perturbation such that the reader can see the 3D
effect of the regularization. Results with stronger per-
turbation are presented in appendix A. It’s important
to emphasize that only the inner nodes and the nodes
associated with 1D stencils and 2D planar faces undergo
perturbations during this deformation process. Subse-
quently, after introducing perturbations to the mesh, we
apply the line sweeping method.

2.2.1 Cubic domain The initial result we present
begins with a perturbed mesh of a cubic domain, as de-
picted in fig. 8.a. After undergoing several iterative reg-
ularization steps, the nodes within this mesh achieve the
desired uniform distribution, as illustrated in fig. 8.b.
The resulting mesh converges back to the initial uniform
state. The method successfully removes the perturba-
tion and enhances the mesh quality.
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xi,1
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Figure 6: Regularization of a 3D stencil : blue, green
and red points are the 2D equal-space-points of in each

direction.

x̃i

x̃j

x̃kx

Figure 7: Regularization of a 3D stencil : blue point
x̃i, green point x̃j and red point x̃k are the 1D

equal-space-points in the three directions of the stencil.

2.2.2 Cylindrical domain The second set of results
concerns a cylindrical domain meshed and randomly
perturbated, as depicted in fig. 9.a. Following a series
of iterative regularization steps, the nodes within this
mesh attain the desired even distribution, as exemplified
in fig. 9.b. The proposed method demonstrates its
capability to produce elements of uniform size, even
in the presence of concave boundaries. This stands in
contrast to the conventional equi-potential relaxation-
based method [9, 8] or the regularization based on
functional minimization like in [5, 6], which may exhibit
grid attraction phenomena when applied to curvilinear
meshes, resulting in reduced mesh quality near concave

(a)

(b)

Figure 8: Regularization of a cubic domain mesh.

boundaries.

2.3 Regularization of singular points in block
structured mesh

Meshing complex geometries in a structured man-
ner often leads to undesirable mesh distortion. The
strategic placement of nodes, referred to as singularities,
in regions where the grid structure is disrupted can sub-
stantially mitigate overall mesh distortion and enhance
its practicality. A block-structured mesh is subdivided
into discrete sections known as blocks, with each block
containing a regular grid. In certain cases, such as when
dealing with circular or curved geometries, a special grid
pattern called an ’O-grid’ may be employed. Singular-
ities often emerge at the intersections of these blocks.
It’s important to note that the regularization of a sin-
gular stencil (fig. 10) differs from that of a regular stencil
due to the incomplete nature of the stencil compared to
structured one.

The objective is to apply the method previously dis-
cussed in section 2.1. A key distinction between a stan-
dard 2D stencil and a singular 2D stencil is the number
of neighboring cells connected to the central node. In
the case of the singular stencil (as shown in fig. 11.b),
the central node is linked to only three neighboring cells,
whereas the regular stencil (as depicted in fig. 11.a) fea-
tures four neighboring cells.
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(a)

(b)

Figure 9: Regularization of a cylindrical domain mesh.

(i,j,k)

Figure 10: Stencil for a singular node (singular stencil).

The main concept involves considering a singular
stencil as an extreme case of a regular stencil. Specif-
ically, a node situated at a corner of the singularity
formed by points A, B, or C (as shown in fig. 11.b)
can be conceptualized as the merging of three individ-
ual nodes. Consequently, for each corner A, B, or C,

7

8
9

4
5

6

1
2

3

(a)
B

C

A

(b)

Figure 11: Comparison between regular 2D stencil (a)
and singular 2D stencil (b).

it becomes possible to reconstruct a regular stencil, as
depicted in fig. 12. The case in fig. 12.a corresponds to
the situation where points 1, 2 and 3 of fig. 11.a merge
to the same position and we have A = 1 = 2 = 3. Same
for fig. 12.b where points 7, 8 and 9 of fig. 12.a merge
to the point B. Finally, in fig. 12.c points 3, 6 and 9 of
fig. 12.a merge to the point C.

The method detailed in section 2.1 can be applied
in conjunction with these three regular stencils. The
equal-space-point x is positioned as the arithmetic mean
of the three regularized points x̃A, x̃B , and x̃C :

x =
1

3
(x̃A + x̃B + x̃C).

The methodology for regularizing 3D singular sten-
cils remains consistent with that described in sec-
tion 2.1.

2.3.1 Shell domain The method developed for the
regularization of singular stencils is now tested with
a shell domain mesh. This mesh consists of block-
structured meshes with singular nodes. After several
regularization iterations, the singular nodes of the per-
turbed mesh (fig. 13.a and fig. 14.a) migrate towards
the center of the domain, resulting in each block being
uniformly meshed in the final regularized mesh (fig. 13.b
and fig. 14.b).

Mesh tangling issues are also effectively addressed
by our method, particularly in cases involving singular
points within block-structured meshes. This is demon-
strated in the mesh examples presented in appendix A,
illustrated in fig. 25.
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Figure 12: The three regular 2D stencils used to
regularize the singular 2D stencil.

2.4 Regularization of a distorted Lagrangian
mesh

The primary objective of the method presented in
the previous sections is to efficiently regularize strongly
distorted Lagrangian meshes within an ALE simulation
code. To illustrate its effectiveness, we present the
results obtained with the method for the triple point
case after numerous Lagrangian iterations. This test
case [4] aims to simulate the complex behavior observed
in shock physics where three different states intersect at
a single point, creating a triple point scenario. The mesh
used in this test case corresponds to the real Lagrangian
solution of the triple point problem with only one
material and three different states. This challenging
simulation involves the interaction of multiple shocks,
resulting in the generation of vortices and the formation
of tangled cells. Notably, at the triple point where
the three existing domains coincide, the mesh quality
is compromised due to these complex interactions.

As observed in fig. 15.b and fig. 15.d, the maxi-
mum aspect Frobenius mesh quality metric in Paraview
is noticeably improved, and mesh crossings become un-
tangled when applying the regularization method. How-
ever, the mesh is smoothed as a consequence. The regu-

(a)

(b)

Figure 13: Regularization of a block strutured mesh
with singular stencils at the jonction between three

blocks (view from side).

larization process causes nodes to move significantly far
from their Lagrangian positions, as depicted in fig. 15.a
and fig. 15.c. Specifically, the method regularizes the
mesh towards a uniform distribution, resulting in a loss
of accuracy in the Lagrangian step.

The challenge lies in determining when to halt the
iterative process to strike a balance between remaining
close to the Lagrange mesh while achieving a satisfac-
tory mesh quality. Ideally, the method should converge
towards a non-uniform mesh that is closely aligned with
the initial Lagrangian mesh while maintaining good
mesh quality. This example underscores the need for
the development of a new regularization method, which
is the focus of the following section.

3 Weighted Regularization Method

As shown in the test case of section 2.4, the
regularisation method introduced by Jin Yao corrects
tangled meshes and produces a good quality mesh.
However, the new mesh may be very different from the
Lagrangian mesh, resulting in a loss of accuracy. Indeed,
the method tends to make the mesh uniform while the
irregular Lagrangian mesh contains interesting physical
features. To address this issue and to ensure that the
regularized mesh remains close to the Lagrangian mesh,
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(a)

(b)

Figure 14: Regularization of a block strutured mesh
with singular stencils at the jonction between three

blocks (view from above).

the Weighted Line Sweeping Method is now introduced.

3.1 Weighted Line Sweeping Method
To prevent the method from rezoning the mesh

uniformly, the idea is to introduce a weighting factor to
the Line Sweeping Method. Considering Γi ∈ [0, 1] as
the corresponding weight, the regularized position xm+1

i

of xm
i is no longer positioned at the centre of the stencil

but is now weighted as displayed in fig. 16.
The weighted regularized point xm+1

i is defined as

xm+1
i =

(
xm
i−1 + Γil

me1
)
δ{Γilm≤lm1 } +(

xm
i+1 + (1− Γi)l

me2
)
δ{(1−Γi)lm<lm2 }

with the same notations as in section 2.1.

3.2 Definition of aspect ratios and weights
The aim of the method introduced in the previous

section is to regularize a mesh with a given set of aspect
ratios into a mesh with another set of known aspect
ratios. Indeed, each mesh has its own node distribution
and its own aspect ratios.

The aspect ratio γi within a 1D stencil (fig. 17) is
defined as:

(a) Lagrangian mesh

(b) Lagrangian mesh quality

(c) Regularized mesh after 100 iterations

(d) Mesh quality after 100 iterations

Figure 15: Regularization of a Lagrangian mesh with
70× 30× 2 cells.

xm
i−1

xm
i

xm
i+1Γil

m

e1

e2
xm+1
i

(1− Γi)l
m

Figure 16: Weighted regularization of 1D stencil.

γi =
l1

l1 + l2
, l1 = |xi − xi−1|,

and l2 = |xi − xi+1|.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited



xi−1

xi

xi+1
l1

l2

Figure 17: The initial aspect ratio of a 1D stencil is

defined as γi =
l1

l1 + l2
.

One should note that the weight γi is limited to
the range [0, 1]. To regularize a 1D mesh initially
defined by a set of aspect ratios γi into a new 1D
mesh with predefined aspect ratios Γi, we initialize
the aspect ratios Γi as regularization weights. During
regularization iteration, the aspect ratio γm

i undergoes
changes and gradually converges towards the target
weight Γi. This process is iterative because the nodes
xm
i−1 and xm

i+1 move independently in relation to xm
i ,

leading to the general case where γm+1
i ̸= Γi. The

approach for regularizing 2D and 3D stencils remains
consistent, incorporating the introduction of weights.
In a 2D stencil, where the central node is part of two
1D stencils, two aspect ratios can be defined, and two
weights Γi and Γj can be associated with the node.
Similarly, in a 3D stencil, where the central node is part
of three 1D stencils, three aspect ratios can be defined,
and three weights Γi, Γj , and Γk can be linked to the
node.

The weight computed directly from the mesh can
also be limited. It’s important to note that when
Γi = Γj = Γk = 0.5 for all i, the Weighted Line
Sweeping Method coincides with the Line Sweeping
Method introduced in section 2.1. On the other hand,
if the weighted line sweeping method is applied to
a non-uniform mesh with initial weights, the mesh
will not move, as the initial grid is a solution of the
regularization algorithm. This behavior is completely
different from the equal space method. To achieve an
intermediate state between these different behaviors,
the initial weights can be limited using a Γlim coefficient.
If we define Γmin = Γlim and Γmax = 1− Γlim then we
can compute new weight Γ̃ using equation

Γ̃i = ΓminΓi + (1− Γi)Γmax

The Γlim coefficient should be chosen within the range
of [0, 0.5]. The limitation process yields new weights,
denoted as Γ̃i, which are in the interval [Γmin,Γmax].
Specifically, if Γlim is set to 0, the initial weights remain
unchanged. Conversely, when Γlim is set to 0.5, the
method converges towards the equal space approach.

3.3 Weighted regularization of cubic domain

The effectiveness of the weighted method is eval-
uated by demonstrating its capability to generate non-
uniform meshes. In the context of this evaluation, a cu-
bic domain featuring a non-uniform mesh is illustrated
in fig. 18.b. To initialize the weights Γi, Γj , and Γk

for each node within this mesh, the aspect ratios of
this mesh are computed and utilized. If the weighted
line sweeping method is directly applied to this non-
uniform mesh with initial weights, the mesh will not
move. Subsequently, this mesh is subjected to random
perturbation, as depicted in fig. 18.a, and the weighted
line sweeping method is applied. Through this process,
the perturbed mesh converges to the mesh shown in
fig. 18.b which was the initial mesh without perturba-
tion. Again, the method is able to correct tangled mesh,
as demonstrated in appendix A in fig. 26.

(a) (b)

Figure 18: Regularization of a non-uniform (in two
directions) mesh.

(a) (b)

Figure 19: Regularization of a 3D non-uniform mesh.

Considering a fully 3D non-uniform mesh in
fig. 19.b, we apply the same methodology. The per-
turbed mesh shown in fig. 19.a is then rezoned into the
mesh displayed in fig. 19.b. Consequently, through this
process, the perturbed mesh converges back to the orig-
inal mesh shown in fig. 19.b, which was the same as the
initial unperturbed mesh.
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3.4 Weighted limitation of a vortex
In this section, we introduce a new test case

inspired by the Taylor Green vortex [2]. This test case
is particularly challenging for Lagrangian methods since
the mesh is severely distorted but not tangled. For this
test case, we use the limiting coefficient introduced in
section 3.2.

In fig. 20.a, the initial Lagrangian mesh is presented.
If we set the limiting coefficient to Γlim = 0, then
the mesh does not move, regardless of the number
of iterations performed. Subsequently, the limiting
coefficient is set to Γlim = 0.25, and after 50 iterations of
regularization, the resulting mesh is shown in fig. 20.b.
Finally, the limiting coefficient is set to Γlim = 0.5.
In this case, the weighted method is equivalent to the
classical line sweeping method. After 50 iterations, the
regularized mesh is presented in fig. 20.c.

3.5 Weights adapted to the Lagrangian mesh
In the previous section, we had the advantage of

knowing the weights Γi, Γj , and Γk at each node because
the desired regularized mesh was predetermined. How-
ever, in this section, we introduce a method for defining
the weights used to regularize a Lagrangian mesh. The
Lagrangian mesh possesses its unique node distribution
and is characterized by its specific set of aspect ratios,
denoted as γL,i, γL,j , and γL,k at each node. This col-
lection of aspect ratios contains valuable physical infor-
mation and is now employed to initialize the weights Γi,
Γj , and Γk for the mesh regularization procedure. To
determine these weights Γi, Γj , and Γk associated with
the central node of a stencil, a method is used whereby
the Lagrangian aspect ratios of neighboring nodes are
averaged, and an iterative process is applied to refine
these weights for optimal results.

For a 2D stencil (fig. 21), the weights Γp
i and Γp

j are
initialized with the Lagrangian aspect ratios γL and are
computed as follow:

Γp+1
i =

Γp
i−1 + Γp

i+1

2
Γp+1
j =

Γp
j−1 + Γp

j+1

2
with Γ0

i = γL,i and Γ0
j = γL,j .

In the case of a 3D stencil, there exist four 1D
stencils in each direction (depicted as fully colored lines
in fig. 22) aligning with the primary 1D stencil (shown
as a colored dotted line in fig. 22) where the weight is
intended to be established.

Next, we examine the 2D stencils encompassing
these 1D stencils represented by the fully colored lines.
We apply the same methodology as for 2D stencils.
As an instance, the weights Γp+1

i are determined by
averaging the weights Γp

i−1 and Γp
i+1 which are defined

in the 2D stencils containing the 1D stencils as in fig. 21.

(a) Initial Lagrangian mesh

(b) 50 iterations with Γlim = 0.25

(c) 50 iterations with Γlim = 0.5

Figure 20: Regularization of a Lagrangian mesh using
limitation coefficient Γlim.
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Γp
i−1

Γp
j−1

Γp
i+1

Γp
j+1

−→
i

−→
j

Γp+1
j =

Γ
p
j−1+Γ

p
j+1

2

Γp+1
i =

Γ
p
i−1+Γ

p
i+1

2

−→
i

−→
j

Figure 21: Computation of Γp+1
i and Γp+1

j for a 2D
stencil.

Once a designated number of iterations p is com-
pleted, the weights become constant and are employed
in the mesh regularization process. By incorporating
these weights in the mesh regularization, the approach
can preserve the distinctive features of the Lagrangian
mesh while simultaneously achieving enhanced mesh
regularity.

Γp+1
i

−→
i

Γp+1
j,1

−→
j

Γp+1
k

−→
k

Figure 22: The weights defined at the fully colored
lines are used to compute the weight at the colored

dotted line.

3.6 Regularization of a distorted Lagrangian
mesh using adapted weights

The aim of introducing weights is to improve the
result obtained in the section 2.4. The same test case
is considered using the weighted regularization method.
Prior to regularisation, the weights are fixed after 100

iterations of the method presented in section 3.5.

(a) Lagrangian mesh

(b) Lagrangian mesh quality

(c) Regularized mesh after 100 iterations

(d) Mesh quality after 100 iterations

Figure 23: Regularization of a Lagrangian mesh with
70× 30× 2 cells.

The weighted regularization method, as depicted in
fig. 23.c and fig. 23.d, successfully maintains the aspect
ratio of the Lagrangian mesh while enhancing the maxi-
mum aspect Frobenius quality metric. Notably, the reg-
ularization process does not necessarily displace nodes
away from their original Lagrangian positions, espe-
cially along the edges where nodes remain stationary.
It’s worth mentioning that the number of iterations re-
quired for adjusting the weights may vary in ALE test
cases. However, in scenarios such as the one described
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here, where cells become tangled at domain intersec-
tions, multiple iterations are necessary for effective reg-
ularization.

3.7 Regularization of a distorted Lagrangian
mesh using adapted weights and limitation

In this section, we introduce adapted weights
coupled with a limitation. The purpose is to present
regularization results intermediate to those obtained by
limiting with initial weights computed on a Lagrangian
geometry, as shown in fig. 24.a, and the results in
fig. 24.c with a limitation coefficient Γlim = 0.5. In
all the cases presented in fig. 24, adapted weights from
section 3.5 are employed with 100 iterations, followed by
the limitation step outlined in section 3.2. For fig. 24.a,
the limitation coefficient is set to Γlim = 0. In this case,
we recover the results presented in section 3.6. The
limitation, corresponding to the classical line sweeping
method with Γlim = 0.5, is presented in fig. 24.c.
The case, representing a balance between fig. 24.a and
fig. 24.c, is obtained using a limitation coefficient Γlim =
0.25 and is presented in fig. 24.b.

4 Conclusion

When solving the Euler equations, the use of the
Lagrangian formalism can lead to significant mesh de-
formations. Thus, an efficient regularization method is
necessary for the indirect ALE strategy in order to pre-
vent tangled cell and mesh quality decrease. The Line-
Sweeping method [10, 11] was first considered because of
its simplicity based on geometric considerations. How-
ever, despite its efficiency, it has been observed that the
final regularized mesh is uniform and may be far from
the initial Lagrangian one (even if it is not necessary).
To prevent the method from rezoning the mesh uni-
formly, weights were introduced in the Line-Sweeping
method. More precisely, the weighted method allows
to regularize an initial mesh with a given set of aspect
ratios into a new mesh with another set of known as-
pect ratios. Here, a key idea consists in using the as-
pect ratios of the initial Lagrangian mesh to define the
weights for the regularisation step. This new weighted
method is promising as it yields results close to the La-
grangian ones but with a better mesh quality. In ad-
dition, it can successfully handle unfeasible cases with
the Lagrangian formalism as the triple point test case.
Various perspectives are to be considered. For example,
the regularisation process can still be improved combin-
ing the Line-Sweeping method with the weighted one.
Also, the regularization method should be coupled to a
hydrodynamic code in order to dynamically regularize
the mesh while solving gas dynamics equations under
the Lagrangian formalism.

(a) Regularized mesh after 100

iterations and Γlim = 0

(b) Regularized mesh after 100

iterations and Γlim = 0.25

(c) Regularized mesh after 100 iterations

and Γlim = 0.5

Figure 24: Regularization of a Lagrangian mesh with
adapted weights and limitation.
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A Regularization of meshes with tangled cells

In this section, we aim to emphasize the capability
of the method to untangle 3D meshes in scenarios
involving shell mesh (as depicted in fig. 25) or non-
uniform mesh (as illustrated in fig. 26). For all test
cases, we deliberately introduce substantial random
perturbations, resulting in the formation of tangled
cells. We then apply the regularization process. After
40 iterations, the mesh becomes untangled, and a
perfectly uniform mesh is restored.

Figure 25: Regularization of a shell domain mesh
(view from above) with tangled cells after 40 iterations

(Line Sweeping Method)

Figure 26: Regularization of a cubic domain mesh with
tangled cells after 40 iterations (Weighted Line

Sweeping Method)
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