MACHINE LEARNING CLASSIFICATION AND
REDUCTION OF CAD PARTS FOR RAPID DESIGN TO
SIMULATION

Steven J. Owen, Armida J. Carbajal, Matthew G. Peterson, Corey D. Ernst

Sandia National Laboratories! Albuquerque, NM, USA sjowen@sandia.gov

ABSTRACT

We demonstrate machine learning methods to reduce bottlenecks in CAD-to-simulation workflows for critical analysis.
Classification of common mechanisms such as fasteners and springs requiring common simplification and preparation
procedures are first addressed. We introduce a new topology-based method for extracting features from CAD parts
based on geometry queries from a third-party CAD kernel. A supervised learning classification procedure is then
used to predict its categorization from a range of pre-defined categories. We demonstrate improved performance for
our classification procedures over similar published work. Also demonstrated are new reduction operations to meet
analysis input specifications that rapidly transform CAD parts identified as fasteners and springs into simulation-
ready proxies. We also introduce a new in-situ classification tool that allows for custom categorization and easy

addition of user-defined training data.

Keywords: machine learning, classification, CAD, geometry simplification

1. INTRODUCTION

Complex assemblies frequently include many common
mechanisms such as bolts, screws, springs, bearings
and so forth. In practice, analysts will spend extensive
time identifying and then transforming each mecha-
nism to prepare for analysis. For example, bolted con-
nections may require specific geometric simplifications,
specialized meshing and boundary condition assign-
ment. For assemblies with hundreds of bolts, model
preparation can be tedious and often error prone. This
work uses machine learning methods to rapidly clas-
sify CAD parts into categories of mechanisms. Once
classified the analyst is able to preview and apply
category-specific solutions to quickly transform them
to a simulation-ready form.

*Sandia National Laboratories is a multimission labo-
ratory managed and operated by National Technology &
Engineering Solutions of Sandia, LLC, a wholly owned sub-
sidiary of Honeywell International Inc., for the U.S. Depart-
ment of Energy’s National Nuclear Security Administration
under contract DE-NA0003525. SAND2022-12981 C

The new environment, as shown in Figure 1, enables
the real-time grouping of volumes in a CAD assembly
using our proposed classification procedure. In this
example, volumes classified as bolts can be efficiently
converted into a simulation-ready form using a sin-
gle operation that may include automatic defeaturing,
meshing, and boundary condition assignment. The
user can preview the reduced form from a variety of
options and apply the reduction operation to multiple
bolts simultaneously. Additional reduction operations
are being developed for other part categories based on
user-driven use cases.

This work aims to identify a machine learning model
that can predict specific categories of mechanisms in
real time from a set of parts in a complex CAD as-
sembly. Our objective is to enable rapid category-
specific reduction operations and significantly reduce
the amount of time required by the user to prepare
models for analysis.

W Recuce B
CAD € ot Come
B WA, Bait Voume 10s) &
ﬁ‘ S Insert Vokuma D(s) §
) \ : J
@ () L)'¢ ——
: o >
classify 4
cone
p
o0 rewer Seas !
v ENe 2 »] e s
Fate
P \lume D<) o
@D Optians fralyzn Auto Update 4 -
Stiow Sohsirs
S
Dimensions

Confiderce.

Eoit (52 © 00897 Q0907 €1 037 Detauit
» goar [5) Confidknce
» cthes (126) Contidirca
» pin(23) Confiderce
> rocy (35)

» apring (€)

» wozher (12)

Charge Shank Diamster
Adjust Hole

Confickrce
Confidence
Contiderce

Match Shank Diametar
Simglity Holo Gecmatry
Tight Fit

- Cavey

Wiebeut
Head - Shank
Shani - Plog

Merge

Mex Meozh

Datnult

Mesh Size 00146244

Assign Blocks

[OX?] Display Preview | Apoly

reduce

—)

simulation-ready

simple reduce spider spider

j2e countersink

spider
wagon wheel

tweak hole diameter Hex Include insert core from
to shaft; webcut head, meshed and tweak surrounding
shank, plug to hole, shaft volumes

Figure 1: Proposed environment for classification and reduction of fasteners.

2. BACKGROUND

While machine learning has been widely applied to
text, image, audio, and video analysis, there has
been limited research on its use in model prepara-
tion for simulation. One notable example is the work
of Danglade et al. in [1], which describes a limited
environment for defeaturing CAD models using ma-
chine learning driven by heuristic rule-based outcomes.
While they propose several new criteria for evaluating
the results of trained models, they rely on human in-
teraction to judge the quality of the results, which
makes the approach difficult to scale.

ML-based part classification is frequently used for
rapid sorting of mechanisms in industrial manufac-
turing processes. Recent work that has demonstrated
the usefulness of machine learning methods for shape
recognition and classification of CAD models includes
12, 3, 4, 5, 6, 7]. However, these methods do not ex-
tend to driving modifications to the CAD model, such
as those required for mesh generation and simulation.
Lambourne et al. [8] propose sorting part classification
models into one of four groups: point cloud, volumet-
ric, image-based, and graph-based approaches. They
provide a brief review of each of these methods, citing
several examples along with their benefits and draw-
backs.

In our application, complex CAD assemblies are typ-
ically produced by advanced 3D design tools such as

Solidworks [9] or PTC Creo [10] for design and man-
ufacturing purposes. Analysts usually use a modi-
fied form of the original CAD assembly as the basis
for a computational simulation model. The assembly
data consists of multiple parts described in file for-
mats such as .step or .sat. These formats describe a
hierarchical arrangement of entities, including vertices,
curves, surfaces, and volumes, or boundary represen-
tation (BREP), and each entity has an underlying nu-
merical description [11]. The metadata conventions in
these formats can often identify a name or other at-
tribute that can assist in part classification. However,
as we often encounter data from a variety of sources,
including legacy CAD assemblies, we cannot assume
a consistent metadata convention and must use other
means for classification.

3. OVERVIEW

Supervised machine learning is a problem where, given
a training dataset (x1,¥1), ..., (Xn, yn) with vector in-
put features x and vector output features y (referred
to as labels or ground-truth), it is assumed that there
exists an unknown function y = f(x) that maps in-
put features to output features. A learning algorithm
can be used to train a model (or fit it) to the data,
such that the model approximates f. Once the model
has been trained, it can be used to evaluate new, pre-
viously unseen input vectors to estimate (or predict)
the corresponding output vectors. To apply supervised

machine learning in a new problem area, the researcher
must determine the domain-specific outputs, identify
the available domain-specific input features that can
be used to predict them, and create a training dataset
containing enough examples of each to adequately rep-
resent their distributions.

For this work, our first decision was to limit the scope
to the classification of individual CAD parts. Next, we
needed to define our machine learning model outputs,
or labels. Since our goal is to classify geometric vol-
umes based on a mechanism’s function, we selected a
few common categories, including: bolt, nut, washer,
spring, ball, race, pin, and gear. Similarly, the input
features x for each model are chosen to characterize
the local CAD model geometry and topology that we
believed would drive those outcomes.

With a machine learning model that can predict the
classification category of a geometric volume, we can
use the predicted classification to present users with
a categorized list of parts based on their mechanism
function. This can help users quickly identify and se-
lect specific parts for further analysis or processing.

4. FEATURES

To predict mechanism categories based on a geomet-
ric volume, we need to characterize the geometry and
topology of the CAD part. For each volume G3 com-
posed of vertices, curves, and surfaces, we defined a
characteristic feature vector x%3.

The selected features that characterize Gz are based
on a fixed-length set of numerical values that describe
the geometric volume. Table 1 describes the attributes
used for the features of (G3. These attributes are
queried from a geometry engine for each volume and
used to construct x3.

For this work, we selected 48 features based on com-
mon characteristics of curves, surfaces, and volumes
frequently used for mesh generation. Each feature can
be easily computed or derived from common query
functions of a 3D geometric modeling kernel [12]. Ta-
ble 1 includes a representative sample of these features,
along with a brief description of each.

5. GROUND TRUTH

For our supervised machine learning model associated
with each volume G3, we needed to provide a ground
truth classification. This was initially done by de-
veloping a python script that reads a CAD part and
presents the operator with an isometric image of the

Table 1: table
Representative sample of 48 features computed for
each CAD volume and used for training data.

ID | Feature Description

0 genus” number of through
holes

1 min_aspect tight bbox. min [/w

2 max._aspect tight bbox. max [/w

3 volume_bbox_ratio® volume/vol. tight
bbox.

4 princ_moments[0]™ principal moment

5 princ_moments[1] moment of inertia

6 princ_moments[2]™ smallest moment

7 dist_ctr_to_bbox_ctr | distance vol. centroid
to bbox. centroid

9 min_area_ratio min area / tot surf
area

10 | max_area_ratio max area / tot surf
area

19 | area_ratio_end area w/curves
225° > 6 > 360°

20 | area_ratio_interior®| area w/curves
0° >0 > 135°

21 | area_ratio_side area w/curves
135° > 6 > 225°

23 | areano_curvature area surfs with no
curvature (planar)

24 | area_low_curvature area surfs with rad >
100 * small_curve

25 | areamed_curvature area surfs with rad.
> 10 * small_curve

26 | area high curvature®| area surfs. with rad.
> small_curve

27 | curve_length len. all curves /
bbox. diagonal

28 | curve_to_area.ratio | len. all curves *
bbox. diagonal / tot.
area

32 | len_straight ratio™ | len. linear curves /
len. all curves

38 | reversal_angles” len. curves w/angle
315° > 6 > 360°

39 | corner_angles len. curves w/angle
225° > 6 > 315°

40 | side_angles® len. curves w/angle
135° > 6 > 225°

41 | end_angles_ratio len. curves w/angle
0° > 6> 135°

*

indicates features used in reduced set

volume. To evaluate our methods, we used 5035 single-
part ACIS files that were gathered from internal pro-
prietary sources and external sources, including Grab-
CAD [13]. GrabCAD is a free subscription service that
provides a large database of CAD models in a wide

variety of formats, contributed by sources from mul-
tiple industries, including aerospace, transportation,
animation, and many others.

The selected CAD assemblies were processed by our
python script and separated into individual parts. The
operator then chose from the predefined set of 9 mech-
anism categories for each CAD part. At that time, a
feature vector, x“%, was generated and appended to
one of 9 .csv files named for its classification category.
For example, if the operator identifies the part as a
gear, features are computed for the volume and ap-
pended to a file named gear.csv. While any CAD
kernel with the relevant evaluators could be used, we
developed our tool using both the Spatial ACIS [12]
and an internally developed geometry kernel.

In section 7, we describe how our approach allows for
the dynamic establishment and enrichment of cate-
gories within the CAD tool environment, providing
a more comprehensive and up-to-date specification of
ground truth.

6. MACHINE LEARNING METHODS

In this work, we evaluated several existing ma-
chine learning classification methods, including ran-
dom forests and neural networks. These methods are
commonly used in the literature for classification prob-
lems, and we chose to use them in our work to compare
their performance for CAD component classification.
Specifically, we used ensemble decision tree (EDT) al-
gorithms from the Scikit-learn (sklearn) library [14]
and deep learning techniques with neural network ar-
chitectures in PyTorch [15]. We found that the EDT
method outperformed the NN approach for this task.
We were able to utilize these open-source tools without
the need to develop new ML technology.

6.1 Neural Network

Neural networks (NNs) are a type of machine learn-
ing algorithm that are inspired by the structure and
function of the human brain. They consist of multiple
interconnected nodes or “neurons” that are activated
based on input criteria. The input layer of an NN typ-
ically consists of a set of characteristics or “features”
that describe the data being processed, and the output
layer provides a predicted value or classification. NNs
are commonly used in image recognition tasks, where
the input features are the pixel values of the image,
and the output layer predicts the probability of the
image belonging to a certain category.

A neural network is trained by providing it with a
large number of examples of the input data along with
their corresponding correct outputs or “labels”. As
the network processes each example, it adjusts the val-

ues of its internal parameters, known as “weights”, in
order to produce the correct output for each exam-
ple. This process continues until the network reaches
a satisfactory level of accuracy on the training data.
Once trained, the network should be able to predict
the correct output for new, unseen examples of the in-
put data. PyTorch [15] is a popular open-source tool
for training and managing neural network models, and
was used to implement our classification method.

Our application involves a traditional classification
problem, where the input layer consists of 48 features
computed from the characteristics of the CAD part,
and the output layer consists of 9 nodes representing
our 9 classification categories. After experimenting
with different configurations, we found that a single
hidden layer with a batch size of 128 and Sigmoid ac-
tivation function provided the best performance. In
a neural network, the activation function determines
the threshold at which a neuron will “fire” or adjust its
weight, and the Sigmoid function is a common choice
for classification tasks. By doubling the size of the hid-
den layer between Sigmoid activations, we were able
to obtain the desired 9-category output.

Each of the 9 output nodes is a floating point value
which roughly approximates a probability score of
whether the CAD part, represented by the 48 input
features, can be categorized by one of the 9 categories,
where each of the 9 positions of the output vector cor-
respond to one of the 9 categories.

The 9 output nodes of the neural network represent the
probability that the input CAD part belongs to each
of the 9 classification categories. Each position of the
output vector corresponds to one of the categories, and
the value at that position approximates the likelihood
that the part belongs to that category.

6.1.1 Feature Correlation

Our choice of features was mostly based on intuition,
and we selected those that we believed to be unique
to each CAD part. However, this approach has the
potential weakness of introducing correlated features,
which are features that are strongly related to each
other and provide redundant information. Techniques
for measuring feature correlation have been well stud-
ied in the machine learning literature [16], and using
these methods can help identify and eliminate corre-
lated features, leading to improved performance of the
classification model.

We found that many of the features we selected were
highly correlated, and we suspected that reducing the
number of features would improve the efficiency of
the training process. To identify correlated features,
we used Spearman’s rank correlation coefficient [17],
which measures the monotonic relationship between

Bolt

Nut

Washer

_ Cmmmrm@

Race

Pin

Gear

Other

Figure 2: Examples of CAD parts used to create ground truth categories for mechanism classification.

two features. After applying this method, we were
able to reduce the number of features without signifi-
cant loss of performance.

We performed a stepwise removal of features by iter-
atively eliminating the most correlated feature until
the remaining features had a Spearman’s rank corre-
lation coefficient of .29 or less. This process was done
one feature at a time to ensure that the removal of a
highly correlated feature did not introduce new corre-
lations among the remaining features. The 9 features
that were retained after this procedure are indicated
with an asterisk (*) in Table 1. These features can be
considered as composite features that capture most of
the information needed for the classification task.

By using the reduced set of features, we were able to
significantly reduce the training time of the neural net-
work, without significantly affecting overall accuracy
of the models (see Table 2). On a MacOS machine,
the training time was reduced from days to 15 min-
utes, and on a Linux machine with an NVIDIA Quadra
RTX 6000 24GB GPU, it was reduced to about 9 min-
utes. Although this improvement was significant, the
training time of the neural network still could not com-
pete with the one-second or less training time of the
ensemble of decision trees (EDT) method. However,
further modifications to the neural network parame-
ters have improved the performance of the 48- and 9-
feature models, as shown in Table 3. Despite these im-
provements, the EDT method remains more efficient

for this task.

6.2 Ensemble of Decision Trees

An EDT is a collection of individual decision trees,
each of which is trained on a subset of the full training
data. At evaluation time, the EDT’s prediction is a
weighted sum of the predictions of each of its individ-
ual trees. In prior work, [18] and [19] the authors used
a regression EDT to predict mesh quality outcomes
based on local geometric features of a CAD model.
This work uses a similar approach where we extend
EDT to use geometric features for classification.

As mentioned earlier, the features in our dataset are
highly interdependent, which can sometimes lead to
multicollinearity. However, this is not an issue for
EDTs because they are able to trim and prune the
decision trees during training, using a voting process
to select the best output for each class. Furthermore,
even with all 48 features included, the EDT can be
trained quickly on most 64-bit MacOS and Window-
sOS systems, typically taking only a few seconds.

7. IN-SITU CLASSIFICATION

Our initial classification methods were well-received,
but analysts requested an interactive method for en-
hancing their training data or adding custom cate-
gories. To address this need, we developed methods

that allow for user input and customization. The
”Normal” developer training scenario, shown in Fig-
ure 3(a), involves collecting examples of CAD parts
that represent the initial 9 categories. The developer
then assigns labels to each CAD part and computes
the corresponding features, which are written to a .csv
file. Once a sufficient number of labeled examples have
been collected, the model can be trained using the
sklearn RandomForestClassifier (EDT) functions in a
separate Python script (see Section 10.1). The trained
model is then serialized and saved as a pickle file. Dur-
ing prediction, the pickled model is loaded and used
to classify new CAD parts into the initial set of 9 cat-
egories (see Section 10.2).

All available training data New category examples

| Existing Model]
with N categores |

Extend model and
appiy leaming slgerithn

Apply learning slgorithm

New Model
— with N+1 categories
Finished Model
with N categeries
Make predictions

Make many predictions

(a) Static SL model (b) Dynamic SL model

Figure 3: Dynamic supervised learning (SL) model for
custom in-situ classification of CAD parts

To make the supervised learning procedures more ver-
satile and enable in-situ classification, our objectives
included the following:

1. Custom categories: Allow the user to dynami-
cally add additional classification categories from
within the CAD tool.

2. User defined training data: Allow the user to in-
teractively add additional ground truth to their
training models.

3. Sharable training data: Allow users to share user
training data.

4. Reclassification: Allow users to modify the clas-
sification assignment.

5. In-situ training: Allow the user to update the
classification model on demand.

Figure 3(b) shows how this was accomplished. Start-
ing with the existing training data, the user can inter-
actively select one or more parts and assign them to a
category string. This category can be chosen from the
existing categories or the user can specify a new one. A
feature vector (see Table 1) is then computed for each
selected volume and written to a .csv file in a persis-
tent user directory. This allows the user to add their

own labeled data to the training set and customize the
classification categories.

Whenever the user updates their training data, the
current EDT model is discarded and a new one is gen-
erated using both the user-defined data and the exist-
ing training set. This allows the model to incorporate
the user’s custom labels and categories. Because EDT
training is very efficient and typically takes less than
one second, rebuilding the model after each update has
minimal impact on performance. Once the new EDT
model is loaded, consisting of both developer-defined
and user-defined data, the user can make additional
predictions using the standard procedure outlined in
Section 10.2.

In some cases, it may be necessary to reclassify a
part by changing its ground truth or label. Our ML
library allows for this situation by implementing a
remove_data() function. Given a set of features for
a CAD part, this function searches through the exist-
ing data and removes any rows that match the input
features. The removed data is then added to the cor-
rected class category, and the EDT model is retrained
to incorporate the updated labels. This allows the user
to easily modify the classification assignments and up-
date the model as needed.

When establishing a new category, it is ideal for the
analyst to provide a large number of ground truth ex-
amples to avoid overfitting. Overfitting is a common
problem in machine learning [20], where a model fits
the training data too closely, leading to poor perfor-
mance on unseen data. However, in some cases, it
may not be possible to collect a large number of exam-
ples for a new category. In these situations, overfitting
can be useful for initially establishing the category on
known problems. As the analyst provides more diverse
examples, the overall accuracy for unseen models will
improve.

8. RESULTS

We report initial results in Table 2 from both NN and
EDT models using the full set of 48 features and a
reduced set of 9 features. To evaluate our results,
we use k-fold cross-validation [21], a well-established
technique in machine learning. We choose k = 5 and
n = 5, where we randomly split the data into 80%
training and 20% testing sets, and repeat the process
for a total of 25 iterations. This allows us to assess the
performance of our models on unseen data and avoid
overfitting.

Table 2 shows a slight decrease in accuracy when us-
ing a reduced set of 9 features compared to the full
set. This decrease is more pronounced for NN than
for EDT, indicating that NNs are more sensitive to
the removal of features, particularly when it comes to

Table 2: Accuracy of EDT and NN models on 5035 CAD parts using 5X5 K fold cross validation.

EDT NN
48 features 9 features 48 features 9 features
precision | recall | precision | recall | precision | recall | precision | recall | support
bolt 100.0 99.0 97.5 98.0 98.5 99.0 95 95.6 998
nut 100.0 100.0 100.0 96.2 97.5 86.8 84.0 73.2 114
washer 97.6 97.6 97.4 90.5 94.8 96.2 79.3 76.4 204
spring 100.0 100.0 100.0 91.3 97.2 93.2 89.3 77.6 110
ball 100.0 100.0 100.0 100.0 99.7 100.0 99.9 100.0 543
race 100.0 100.0 94.3 100.0 95.7 96.0 90.1 87 148
pin 100.0 100.0 100.0 100.0 98.2 97.8 92.0 94.3 328
gear 100.0 93.3 96.3 86.7 92.0 91.9 79.4 47.2 210
other 99.0 99.8 97.6 98.8 97.8 98.1 89.7 93.9 2380
total 99.4 99.3 97.9 97.7 97.7 95.5 91.0 83.5 5035

recall. Although the results for both reduced feature
sets may be sufficient for many applications, the time
spent identifying correlations and reducing the feature
sets did not result in a significant improvement in per-
formance when compared to the training time of the
two methods.

In addition to the classification accuracy results, Table
3 also reports the CPU training time for each of our 4
models. These results are the average training time for
one iteration of the k-fold cross-validation procedure,
and they provide insight into the efficiency of the dif-
ferent models. While time to tune hyper-parameters
for each of the models was not included in the timing
results, we note a significantly higher overhead for NN
as compared to EDT to evaluate and reduce feature
correlation.

Table 3: Performance of EDT and NN models. 5035
models with 5x5 K fold cross validation

46 features | 9 features | 46 features | 9 features
0.83s 0.51s 541s 512s

These results show that EDT outperforms neural net-
works on our training set, with a training time that
is about three orders of magnitude faster. While both
models achieved precision and recall above 95% when
using the full set of features, we observed a significant
decrease in accuracy for the reduced set of features
with the NN model. Although pruning the features
slightly improved the performance of both models, the
benefit was minimal. Overall, these results suggest
that EDT is a more efficient and effective model for
our dataset.

After experimenting with various ML tools and ap-
proaches, including NN and EDT, we found that EDT
was the best model for our purposes. As shown in Ta-
ble 3, EDT was much faster to train than NN, which
was critical for our objective of incorporating real-time
in-situ training. We also observed that NN was more

sensitive to feature interdependence, while EDT was
not affected by this issue. This reduced the need for
extensive feature selection and allowed us to use the
full set of features without sacrificing performance.
Additionally, we found that the accuracy of EDT was
comparable to NN, with a slight advantage for EDT.
Overall, these factors made EDT the preferred model
for our use case.

9. COMPARISON

To evaluate our method against other machine learn-
ing techniques, we use the Mechanical Component
Benchmark (MCB) [22]. This benchmark provides
two large datasets of over 58,000 mechanical parts.
While other public repositories of CAD parts exist
[23, 24, 25], MCB is particularly useful as it groups
parts based on user-defined categories, providing clear
ground truth. Additionally, several existing deep
learning methods have published results based on
MCB.

The first dataset (A) is divided into 68 categories, and
the second (B) contains about 18,000 objects divided
into 25 categories. Each object is in the form of an
.obj file, which is a common format used in graphics
applications. However, this format represents objects
using only facets (triangles), which is not well-suited
to a boundary representation (BREP)-based approach
like ours. Nevertheless, we were able to adapt most of
the training data for our EDT classification method.

Since our features are dependent on topological enti-
ties, we used a mesh-based BREP [26] to represent the
objects in the MCB datasets. This method breaks the
surfaces and curves of the objects at angles exceed-
ing 135 degrees. However, we also observed anomalies
in the data that could not be represented using our
current methods [26]. As a result, we discarded those
objects that did not meet our criteria before evaluating
the performance of our models.

To ensure consistency in the evaluation of different

models, the MCB dataset includes separate training
and testing sets for both datasets A and B. We tested
our models on 5,713 objects with 68 classes in dataset
A and 2,679 objects with 25 classes in dataset B. We
compared our results with those of multiple published
deep learning models reported in Kim et al. [22] on
the same datasets. We replicate their results in Table
4 for Accuracy over Object and Average Precision for
both datasets A (68 classes) and B (25 classes), and
we also include the results of out EDT model, named
CubitEDT, for comparison.

Table 4: Comparison of 7 deep learning models to Cu-
bitEDT.

Accuracy (%) | Precision (%)
Method A B A B

PointCNN 93.89 | 93.67 | 90.13 93.86
PointNet+4 | 87.45 | 93.91 73.45 91.33
SpiderCNN 93.59 | 89.31 | 86.64 82.47

MVCNN 64.67 | 79.17 | T7.69 | 79.82
RotationNet | 97.35 | 94.73 | 87.58 | 84.87
DLAN 93.53 | 91.38 | 89.80 | 90.14
VRN 93.53 | 85.44 | 85.72 | 77.36

CubitEDT | 97.04 | 92.9 | 91.79 | 85.81

Our analysis shows that the accuracy and precision
of CubitEDT is on par with, or exceeds, the major-
ity of other deep learning methods reported on the
MCB datasets. For instance, PointCNN has an ac-
curacy of over 90% on both datasets. In comparison,
CubitEDT demonstrates improved accuracy and pre-
cision when compared to PointCNN for dataset A, but
slightly lower accuracy for dataset B. Overall, Cubit-
EDT compares very favorably to the reported accu-
racy and precision of other deep learning models. No-
tably, Kim et al. [22] did not report performance met-
rics for comparison.

10. IMPLEMENTATION

To make the new part classification capabilities
available to analysts, we implemented them in the
Cubit™ Geometry and Meshing Toolkit [27]. The
toolkit provides both a command-line interface and
a graphical user interface, and it is built on top of
a new machine learning library that can be accessed
through an application programming interface (API)
using C++ or Python. This allows analysts to easily
use the classification tools within their existing work-
flow.

Our objective in developing a new ML library was
to provide a common environment for external CAD-
based applications to use these tools without the need
to access the capabilities through a specific end-user
meshing tool. This allows external applications to link

with the ML libraries and include its headers, as a
third-party library. While the meshing tool served as
the initial recipient and test case for the ML libraries,
they were developed with the intent of including them
in next generation software.

Included in the ML libraries are functions to gener-
ate the standard set of 48 features given a single part
CAD model. This involves querying the CAD kernel
to compute each of the 48 features shown in Table
1. While initially the features were generated based
on the ACIS [12] kernel, we have more recently de-
veloped a CAD abstraction interface that allows for
other CAD kernels. For our purposes, we specifically
targeted an internally-developed geometry kernel that
is currently under development.

The following is a general outline of the procedures
used to train a set of CAD parts and generate predic-
tions:

10.1 Training

The training process for building a serialized model for
machine learning consists of the following steps:

1. Generating training data: The procedure for
generating training data is described in Section
5. It involves providing a fixed set of .csv files,
where each row of a .csv file contains exactly 48
entries corresponding to the features of one CAD
volume. Each .csv file is named according to its
ground truth category.

2. Importing training data: Standard python
tools are used to import each of the .csv files
and the features and labels are stored as vectors,
Xtrain and Ytrain respectively.

3. Executing EDT training: The sklearn
RandomForrestClassifier class is invoked di-
rectly using the following functions:

model = sklearn.ensemble.
RandomForestClassifier(
n_estimators = tree_count,
max_depth = max_depth)

model = model.fit(X_train, Y_train)

The sklearn library also allows for optional ar-
guments to customize the decision tree methods.
The tree_count and max_depth arguments con-
trol the maximum number of decision trees and
the maximum depth of branching for each in-
dividual tree respectively. Experimentation re-
vealed that tree_count = 5 and max_depth =
20 provided the optimal performance/accuracy
tradeoffs. Larger values for these arguments can

potentially deliver more accurate results, but may
result in longer prediction times and larger pick-
led models.

4. Serializing the EDT model: Once a successful
EDT model is generated, it can be dumped to a
pickle file. This will encode the model object as a
byte stream on disk for later use when predicting
classification categories.

10.2 Prediction

The procedure for predicting the classification cate-
gory of a CAD part using a serialized model is as fol-
lows:

1. Importing the serialized classification
model: The serialized EDT model object is im-
ported and stored. Once successfully imported, it
can be queried to predict any classification given
a set of features.

2. Identifying the CAD part: The user will iden-
tify one or more CAD parts for which a classifi-
cation category is to be predicted.

3. Generating features: The 48 features de-
scribed in Table 1 are computed for each CAD
part.

4. Transforming/scaling the features: As fea-
tures cannot be used directly, a scaling pipeline
is first applied to each of the features.

5. Predicting: The sklearn library is invoked and
a result vector of probabilities is returned.

Y_classify = model.predict_proba(
X_classify)

In this function, X_classify is a 2-dimensional
vector of size = 48 x n where 48 is the number
of features and n is the number of CAD parts.
The return vector Y_classify is a vector of size
= 9 X n, where 9 is the number of classification
categories.

6. Identifying the most likely category: The
category with the highest probability is chosen
as the classification category. However, it may
be useful to provide the probability or confidence
values to the user when results are not clear cut.

11. REDUCTION OF CAD PARTS

In this study, we not only sought to identify com-
mon categories of mechanisms in design solid models,
but we also aimed to develop simplified methods for
quickly reducing the original solid model representa-
tion with minimal user interaction. As an example
problem, we focused on the fastener reduction prob-
lem and also addressed the reduction of spring compo-
nents. Other mechanism types will be considered as
needed.

11.1 Fastener Reduction

Fasteners may require various representations depend-
ing on the physics and fidelity of the simulation
[28, 29]. In some cases, the simplification, boundary
condition assignment and meshing of an individual fas-
tener could take upwards of 30 minutes to an hour of
user time. With many assemblies consisting of tens or
hundreds of bolted connections, fastener preparation
becomes a tedious, time consuming and potentially er-
ror prone endeavor.

We outline one possible automatic recipe for reducing
bolts for analysis. In this case a diagram of a single
bolt, fastening two volumes is shown in Figure 4 where
an optional insert, or cylindrical band, is modeled sur-
rounding the shaft of the bolt, which is often modeled
physically overlapping its surrounding geometry. In
this scenario, the user may choose from multiple op-
tions when reducing the fasteners, including removal
of chamfers, rounds, cavities, modification of the di-
ameter of hole or bolt, adjusting alignment and fit of
the bolt with the hole, separation into different vol-
umes representing head, shaft and plug components,
hex meshing at a specific resolution, and automatic
assignment of boundary conditions.

In practice, the user will typically experiment with in-
put options, using the GUI panel illustrated in Figure
1 and then apply the same reduction recipe to multi-
ple bolts simultaneously. A few examples of options
applied to the bolt pictured in 5(a) are pictured with
results display in Figures 5(b) - (e)

11.1.1 Bolt Reduction Algorithm

The following method illustrates the procedure used
for reducing one or more fasteners and their surround-
ing geometry to a simulation-ready state.

Input: The method takes as input one or more vol-
umes classified as “bolt”. Optional corresponding vol-
umes classified as “insert” may also be specified.

Output: The output of the method is a reduced set of
bolt and insert geometry that is webcut, meshed with

I
ke L
: ==l
Bolt Hgad
‘ Shank
i
i i
i +—lInsert Plug |+ jnsert
%] H]
O

!

‘—‘(-1 Diameter

Figure 4: Example before and after the Reduce oper-
ation. Also shows optional insert geometry at the bolt

fiin

(a) (b) (c) (d) (e)

Figure 5: Example of four different variations of syntax
for the reduce bolt fit_volume command on a single bolt.

boundary conditions applied. Depending on user op-
tions, the neighboring volumes may also be modified.

Method:

1. Identify Nearby Volumes: This step involves
identifying at least one upper volume (dark grey
volume in Figure 4) and a lower volume (light
grey volume in Figure 4). If not already provided
by the user, an optional insert volume can also
be determined based on proximity.

2. Identify dimensions, axis, and surfaces of
the bolt: This step includes extracting top and
bottom surfaces, as well as shaft and head, based
on expected common characteristics of known
bolt geometry.

3. Autosize: If a mesh size is not specified by the
user, an autosize is computed, which is a mesh
size based on the relative dimensions of the bolt
volumes. This value is used for both meshing and
determining tolerances in the next step.

4. Identify surfaces to be removed: Geometric
diagnostics are performed to determine whether
the bolts’ surfaces have certain traits, such as
blends, chamfers, cavities, close loops, small
faces, or conical surfaces.

5. Simplify bolt geometry: Successive CAD op-
erations are performed to remove the surfaces
identified in step 4. It is important to note
that removal of a surface of one trait character-
istic may introduce other surfaces that require
removal. As a result, steps 4 and 5 are repeated
until no further surface removal operations are
possible.

6. Align bolt to hole axis: If the align bolt option
is used, this step checks for alignment of the hole
and bolt axis. If not properly aligned, the bolt
geometry is transformed to match the hole, such
that the bolt and hole axes are colinear.

7. Simplify insert geometry: If an insert is
present, the procedure described in steps 4 and 5
is used to simplify the insert geometry.

8. Modify Bolt Diameter: If a diameter value is
specified in the command, a CAD surface offset
operation is used to adjust the diameter of the
bolt shaft.

9. Simplify Hole Geometry: If the simplify hole
option is used, any chamfers or rounds decorating
the hole geometry, as well as any conical surfaces
at the bottom of the hole, are identified and re-
moved.

10. Remove gaps and overlaps between shaft
and lower volume: Utilize a boolean subtract
operation to eliminate any overlap between the
lower volume and the shaft geometry when the
tight fit option is selected. This will ensure a pre-
cise fit between the two components, eliminating
any gaps or overlaps. Note that this option is not
applicable if an insert geometry is present.

11. Remove Insert overlap: Use a boolean sub-
tract operation to remove any overlap between
the insert and the lower volume or the bolt shaft,
if an insert is present.

12. Cut Geometry: Utilize a sheet extended from
the base of the bolt head to split the head from
the shaft when the cut option is selected. Use
web-cutting with a sheet extended from the top
surface of the lower volume to separate the shaft
from the plug. Perform a merge operation on
the three bolt components to ensure a contiguous
mesh is generated.

13. Cut head for multisweep: When the key cav-
ity remains in the bolt geometry and the mesh
option is selected, cut the bolt head using a cylin-
drical surface extended from the bolt shaft to fa-
cilitate use of the pave-and-sweep many-to-one
tool. This is done to ensure that only one tar-
get surface is required for many-to-one sweeping
when the cavity remains in the bolt.

14. Create material blocks: Create material
blocks for each bolt component, including the in-
sert (if present), and name/number them accord-
ing to the user input options. When multiple
bolts are reduced in the same command, allow
the user to specify consecutive numbering conven-
tions for easy identification of the different bolt
components.

15. Mesh: Invoke the internal meshing tools and use
the input mesh size (or autosize computed in step
3) followed by the pave and sweep tools to gener-
ate a hex mesh on each of the bolt components, as
well as the insert (if present). Check mesh qual-
ity following meshing and report any potential
element quality issues to the user.

The fastener reduction procedure outlined above is one
of the many reduction methods developed in this work.
We also considered other scenarios involving different
physics, analysis codes, and resolution needs. Figure
1 illustrates some of the results obtained from these
alternate reduction options.

Figure 6(a) shows an example of the use of the fas-
tener reduction operators on an assembly containing
many similar bolted connections. Here we illustrate
one group of similar fasteners that all require similar
analysis preparation. Traditional approaches would
require hours of tedious geometry manipulation by
an experienced engineer/analyst, as well as wearisome
book-keeping of boundary conditions.

Figure 6(b) shows the result of a single reduction oper-
ation that utilizes the method described above. Once
classification is complete, the user can select similar
bolts and apply the same reduction recipe, including
meshing and boundary condition assignment. For this
example, the full reduction operation on the 16 bolts
in Figure 6 took approximately 17 seconds on a desk-
top machine running serial.

11.2 Spring Reduction

Another common issue faced by analysts is the prepa-
ration of spring components for analysis [30]. Using a
full 3D solid representation of a spring can require a
large number of hexahedra or tetrahedra to accurately
capture its behavior, which can be computationally in-
tensive and time-consuming to generate. To overcome

(a) Bolts prior to reduce operations.

(b) Bolts after reduce operations.

Figure 6: lllustrates the efficient reduction of 16 bolts
using the proposed method. The bolts are simplified, fit
to the surrounding geometry, cut, merged and meshed
with a single operation.

this challenge, analysts often use a simplified, dimen-
sionally reduced version of the spring in their analysis.
This can be simpler to model and faster to compute,
while still providing accurate results.

Figure 7 depicts the process of simplifying a 3D solid
model of a spring to one or more geometric curves
along the axis of its helical geometry. This dimensional
reduction process is performed automatically by our
tool, making it easy for analysts to prepare the spring
for finite element analysis. The resulting curves can
then be quickly meshed using internal meshing tools,
and assigned to a material block, greatly reducing the
time and effort required for spring analysis.

11.2.1 Spring Reduction Algorithm

Input: One or more volumes classified as ”spring”.

—

Figure 7: Example of spring reduction from solid to beam
representation

Output: One or more connected curves following the
mid-curve of the spring, optionally meshed with beam
elements.

Method:

1. Heal surfaces: Check and merge surfaces that
have blends or can be split into parts.

2. Identify tube-like surfaces: Identify surfaces
such as cylinders, tori, NURBs with circular
cross-sections, and helical sweeps that sweep a
circle along a helix.

3. Extract mid-curves: From each identified sur-
face, extract the curve at the middle of the cross-
section.

4. Trim Curves: Remove any capping surfaces
from the mid-curves.

5. Join Curves: Combine the mid-curves into a
single wire body if desired.

6. Create Spline: Fit all mid-curves to a single
NURBES curve if a single curve is desired.

7. Generate beam mesh: Generate beam ele-
ments and/or blocks based on user input.

12. CONCLUSION

In conclusion, we have successfully developed and
demonstrated new classification and reduction meth-
ods that leverage Al and machine learning to improve
the efficiency, accuracy, and reproducibility of prepar-
ing simulation-ready models from a design solid model.

Our in-situ ML-based tool allows for on-the-fly cus-
tom classification and suitability predictions for cer-
tain types of geometric operators, and serves as a foun-
dation for establishing a centralized knowledge base
for CAD and model preparation operations. These
capabilities can significantly reduce the time and ef-
fort required for common preparation tasks, and en-
able analysts to focus on more complex and critical
tasks. We believe that our approach has the potential
to greatly improve the productivity and effectiveness
of engineering analysts in design and validation of crit-
ical assemblies.

References

[1] Danglade F., Pernot J.P., Philippe V. “On the
use of Machine Learning to Defeature CAD
Models for Simulation.” Computer Aided Design
and Application, vol. 11(3), 2013

[2] Ip C.Y., Regli W.C. “A 3D object classifier for
discriminating manufacturing processes.”
Computers & Graphics, vol. 30, 903-916, 2006

[3] wei Qin F., Lu-ye Li S.m.G., ling Yang X., Chen
X. “A deep learning approach to the
classification of 3D CAD models.” Journal of
Zhejiang University-SCIENCE C, vol. 15(2),
91-106, 2014

[4] Niu Z. Declarative CAD Feature Recognition -
An Efficient Approach. Ph.D. thesis, Cardiff
University, 2015

[5] Dong G., Yan D., An N. “A CAD-Based
Method for Automated Classification of
Mechanical Parts.” Computer-Aided Design,
vol. 41, no. 5, 489-500, 2009

[6] Kim H., An C., Ko H. “A Hybrid Machine
Learning Approach for CAD Part
Classification.” Proceedings of the 2nd
International Conference on Machine Learning
and Computing, pp. 647-651. IEEE, 2012

[7] Shafiee M.J., Behzadan A.H. “Automated
Classification of 3D CAD Models Using
Convolutional Neural Networks.” Proceedings of
the 5th International Conference on 8D Vision,
pp. 583-592. IEEE, 2017

[8] Lambourne J.G., Willis K.D.D., Jayaraman
P.K., Sanghi A., Meltzer P., Shayani H.
“BRepNet: A topological message passing
system for solid models.” CoRR, vol.
abs/2104.00706, 2021. URL
https://arxiv.org/abs/2104.00706

[9] “MySolidworks.” https://my.solidworks.com.
Accessed: 2022-01-04

(10]

(11]

(12]

(13]

(17]

(18]

“Creo Parametric 3D Modeling Software.”
https:
//www.ptc.com/en/products/creo/parametric.
Accessed: 2022-01-04

Colligan A.R., Robinson T.T., Nolan D.C., Hua
Y., Cao W. “Hierarchical CADNet: Learning
from B-Reps for Machining Feature
Recognition.” Computer-Aided Design, vol. 147,
103226, 2022

“3D Acis Modeler.” https://www.spatial.com/
products/3d-acis-modeling. Accessed:
2022-09-06

“GrabCAD, Making Additive Manufacturing at
Scale Possible.” https://grabcad.com.
Accessed: 2022-09-12

Pedregosa F., Varoquaux G., Gramfort A.,
Michel V., Thirion B., Grisel O., Blondel M.,
Prettenhofer P., Weiss R., Dubourg V.,
Vanderplas J., Passos A., Cournapeau D.,
Brucher M., Perrot M., Duchesnay E.
“Scikit-learn: Machine Learning in Python.”
Journal of Machine Learning Research, vol. 12,
2825-2830, 2011

Paszke A. “PyTorch: An Imperative Style,
High-Performance Deep Learning Library.” pp.
8024-8035. Curran Associates, Inc., 2019

Gama J., Pinto 1.S., Pereira F.C. “Identification
of Highly Correlated Features in Data Streams.”
Proceedings of the 11th ACM SIGKDD
International Conference on Knowledge
Discovery and Data Mining, pp. 193-202. ACM,
2005

Xiao C., Ye J., Esteves R., Rong C. “Using
Spearman’s correlation coefficients for
exploratory data analysis on big dataset.”
Concurrency and Computation: Practice and
Ezperience, vol. 28, 12 2015

Owen S., Shead T., Martin S. “CAD
Defeaturing Using Machine Learning.” 28th
International Meshing Roundtable, Buffalo NY,
Oct 2019. URL
https://doi.org/10.5281/zenodo.3653426

Owen S.J., Shead T., Martin S., Carbajal A.J.
“Entity Modification of Models.”, September
2020. US Patent: 17/016,543

Ying X. “An Overview of Overfitting and its
Solutions.” Journal of Physics: Conference
Series, vol. 1168

21]

(22]

23]

(24]

Keerthi S.S., Shevade C.K. “Improvements to
Platt’s SMO Algorithm for SVM Regression.”
Neural Computation, vol. 13, no. 3, 637-649,
Mar 2001

Kim S., Chi H.g., Hu X., Huang Q., Ramani K.
“A Large-Scale Annotated Mechanical
Components Benchmark for Classification and
Retrieval Tasks with Deep Neural Networks.”
A. Vedaldi, H. Bischof, T. Brox, J.M. Frahm,
editors, Computer Vision — ECCV 2020, pp.
175-191. Springer International Publishing,
Cham, 2020

Wu Z., Song S., Khosla A., Yu F., Zhang L.,
Tang X., Xiao J. “3D ShapeNets: A deep
representation for volumetric shapes.” 2015
IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 1912-1920.
2015

Mo K., Zhu S., Chang A.X., Yi L., Tripathi S.,
Guibas L.J., Su H. “PartNet: A Large-scale
Benchmark for Fine-grained and Hierarchical
Part-level 3D Object Understanding.” CoRR,
vol. abs/1812.02713, 2018. URL
http://arxiv.org/abs/1812.02713

Xiang Y., Kim W., Chen W., Ji J., Choy C.B.,
Su H., Mottaghi R., Guibas L.J., Savarese S.
“ObjectNet3D: A Large Scale Database for 3D
Object Recognition.” European Conference on
Computer Vision. 2016

Owen S., White D. “Mesh-Based Geometry: A
Systematic Approach To Constructing
Geometry From A Finite Element Mesh.” 10th
International Meshing Roundtable, Newport
Beach CA, pp. 83-98, 11 2001

“Cubit Geometry and Meshing Toolkit.”
https://cubit.sandia.gov. Accessed:
2022-09-06

Ibrahim A.M. “On the Effective Finite Element
Simplification of Bolted Joints: Static and
Modal Analyses.”, 2020

Ross M., Murphy A., Stevens B. “Fastener
Modeling Effects on Fatigue Predictions for
Mock Hardware in a Random Vibration
Environment.” AIAA Scitech 2019 Forum. San
Diego, California, 2019

Yu A., Yang C. “Formulation and Evaluation of
an Analytical Study for Cylindrical Helical
Springs.” Acta Mechanica Solida Sinica, vol. 23,
no. 1, Feb. 2010

