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ABSTRACT

Quad meshing is a very well-studied domain for many years. While the problem can be globally considered as solved, many
approaches do not provide suitable inputs for Computational Fluid Dynamics (CFD) and in our case for supersonic flow
simulations. Such simulations require a very strong control on the cell size and direction. To our knowledge, engineers
ensure this control manually using interactive software. In this work we propose an automatic algorithm to generate full
quadrilateral block structured mesh for the purpose of supersonic flow simulation. We handle some simulation input like
the angle of attack and the boundary layer definition. Our approach generates adequate 2D meshes and is designed to be
extensible in 3D.
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1. INTRODUCTION

Mesh generation is a critical component of a computa-
tional physics based analysis process. The mesh used for
a simulation has a considerable impact on the quality of
the solution, the stability, and the resources expended to
complete the simulations. In this work, we consider the
specific field of Computational Fluid Dynamics (CFD) and
more precisely supersonic flow simulations. According to
Chawner et al. [1], multi-block structured meshes pro-
vide the most accurate solutions for CFD. This is among
the most popular meshing techniques for flow simulation
[2]. But the generation of such meshes is very challeng-
ing and time-consuming for high-skilled engineers who can
spend weeks or months to generate the adequate mesh us-
ing complex interactive tools. It is considered as one of
the most time consuming step in the CFD process [1, 3].

The context of our work is the atmospheric (re)entry of
a vehicle that can be a spacecraft (see Fig. 1 for an ex-
ample). The geometric domain Ω we consider here is a
sphere that surrounds the vehicle and our final goal is
to pave the path to automatically generate the adequate
block-structured meshes for supersonic flow simulations in
2D and 3D. We focus in this paper on the 2D case with
the constraint that the different choices of the proposed
solution do not meet specific restrictions to be extended
in 3D. Dealing with supersonic flow simulation induces

to consider in the meshing process the geometrical shape
of Ω, but most importantly several simulation parame-
ters (difference between vehicle front and back, boundary
layers, angle of attack) that have a strong impact on the
simulation results.

With these constraints in mind, we adapt current quadri-
lateral meshing techniques. Quad meshing is a very well-
studied domain for many years. While the problem can
be globally considered as solved if you look at recent re-
sults [4, 5, 6, 7], many methods do not provide suitable
inputs for supersonic flow simulations. In our case, we re-
quire to have a block-structured mesh and to control the
size, boundary orthogonality and cell direction in some
areas. Most of the time, the mesh size can be controlled
at the price of losing/degrading the mesh structure, while
controlling boundary orthogonality is ensured with inter-
active software. In this work, we focus on a very demand-
ing field, which is supersonic flow simulation codes. Such
aerodynamics application require to handle thin boundary
layers around the re-entrance vehicle, to control the cell
size and orientation and to capture some shock areas.

1.1 State of the art

Due to the complexity of supersonic flow simulations, the
grid density required to obtain the resolution of flow field
gradients is unknown a priori [8]. Thereby some re-



searchers concentrate on using mesh adaptation during
the simulation [9]. Currently, unstructured meshes with
high cell quality can be generated on complex geometries
in a fully automatic way, which saves time. Unstructured
meshes are also easier to adapt to specific metrics. But,
in CFD, solvers may be less efficient in terms of memory,
execution speed, and numerical convergence on this type
of mesh topology [10].

Considering that multi-block structured meshes provide
the most accurate solutions for CFD [1, 2], therefore those
meshes are preferred. However, the generation of such
meshes is very challenging and time-consuming for high-
skilled engineers, especially in 3D. Fully automatic 3D
multi-block structured mesh generation is a complex prob-
lem and currently there is no algorithm able to generate
an ideal block topology. Then, other types of meshes may
be used, such as over-set grids [11]. This makes easier the
process of mesh generation on complex multi-component
geometries. Even if these meshes provide a solution as ac-
curate as the structured ones, it requires specific solvers
with complex interpolation. Hybrid meshes for CFD (a
thin layer of hexahedral elements near the wall and tetra-
hedral cells in the far field) are easier and faster to gen-
erate. Nevertheless, there is no proof that hybrid meshes
provide a solution as accurate as block-structured or over-
set meshes.

In practice, the mesh quality is strongly linked to solver
algorithms. Even if the same physic is solved, each solver
has its quality criteria [3]. As explained by Chawner

et al. [1], the mesh quality criteria for CFD simula-
tions are always stated in a non-quantitatively way. For
instance, terms like “nearly orthogonal”, “spacing should
not be allowed to change too rapidly”, “give consideration
to skewness”, “sufficiently refined”, “adequate resolution”
and “use high aspect ratios” are used frequently and ca-
sually. Mesh generation relies on engineering experience.
Thus, it is easier to check if a mesh is not "bad", instead
of if it is "good". Indeed, an a priori mesh must at least
pass the ‘validity’ requirements of the utilized flow solver
(no negative volume cells, no overlapping cells, no void be-
tween cells, ...). The VERDICT library [12] is a reference
software package for this type of mesh quality evaluation.
In fact, the ultimate quality measure for a mesh is the
global error measure on the quantity of interest after the
simulation.

In order to find a way to generate a 2D quad block struc-
ture with an approach that extends to 3D, we can take a
look at [4], [13] and [14] that provide complete surveys of
existing techniques in 2D, 3D surfaces and 3D. Consider-
ing we expect to get a block-structured mesh, polycube-
based methods and frame fields seems the most relevant.
Polycubes were first used in computer graphics for seam-
less texturing of triangulated surfaces [15]. Many tech-
niques [16, 17, 18, 19, 20, 21] improved first results. But
the orientation sensitivy and the simple structure of a fi-
nal coarse polycube does not fit our requirement. For sev-
eral years now, frame fields have offered a promising solu-
tion for both quadrilateral and hexahedral mesh genera-
tion. They are computed as a continuous relaxation of an
integer-grid map with internal singularities (that overcome

some limitation of polycubes). The majority of frame field
methods have three major steps: first they create and op-
timize a boundary-aligned frame field; then they gener-
ate an integer-grid map, which is aligned with previously
defined frame field [22]; and finally, they extract integer
isolines (in 2D) or isosurfaces (in 3D) to form an explicit
block-structured mesh [23]. To the best of our knowledge,
generating a 3D frame field remains challenging and state-
of-the-art methods still fail to produce a hex-compatible
frame field in 3D.

Considering that our application field is limited to the
outer space that surrounds a single vehicle with a zone
of interest near the vehicle wall, we can adopt the strat-
egy proposed in [24] where they use an advancing-front
approach to mesh such configurations in 3D. Such algo-
rithm, like the paving algorithm in 2D [25] are relevant
for our purpose. In the paving method, each boundary
is previously meshed. In this work, since we do not have
constraints far from the vehicle, only the vehicle wall is
pre-meshed. Moreover, we differ from the original paving
algorithm in creating new points: starting from a front
point p, we transport p along a flow (defined by a vector
field) to get the next point.

1.2 Main contributions

Generating adequate quadrilateral mesh for supersonic
flow simulation requires to consider both the geometrical
shape of the domain Ω but also some simulation parame-
ters like the angle of attack, the thickness of the boundary
layer, the distinct behaviour required in the front or the
back of the vehicle and so on. Such conditions can be
achieved manually in 2D. We propose to do it automati-
cally in this work with the aim to extend it in 3D after-
ward. That’s why our approach relies on the work of X.

Roca et al. [24] and extend it to our special case with
considering:

1. the boundary layer around the vehicle wall as a spe-
cial area where we apply specific smoothing and dis-
cretization algorithms;

2. several geometry- and physics-based scalar fields that
are mixed to control the mesh generation process;

3. test cases are proposed to compare other algorithm
on given mesh quality criteria.

2. TERMINOLOGY AND PROBLEM
STATEMENT

This work aims to propose an algorithm to automatically
generate block-structured quadrilateral meshes for super-
sonic computational fluid dynamics.

2.1 Supersonic vehicle and environment

Figure 2 shows briefly the traditional flow topology ob-
served during a supersonic flow simulation. The direction
of the inflow is represented by the black vectors u8 ( )



(a) Triangulation (b) Distance Field (c) Vector Field (d) Blocks (e) Mesh (f) Results

Figure 1: The main stages of our approach. Starting from a triangulation of the domain (a), we first generate and combine
distance fields (b) and build a vector field that ensure wall orthogonality and the alignment with the angle of attack (c).
Using those fields, we generate curved blocks (d) and a final quad mesh where the element size is carefully controlled in the
boundary layer (e). Numerical simulation can then be launched (f).
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Figure 2: Flow around a supersonic vehicle.

and the angle of attack (AoA) ³. Due to the effect of vis-
cosity, a very thin boundary layer plotted in orange ( )
develops on the wall. This region is characterized by very
strong gradients of velocity and temperature. To compute
an accurate solution of the Navier-Stokes (NS) equations,
very thin and regular cells are needed in the wall-normal
direction. Thus, structured mesh are well suited for this
area. As few as possible singular nodes (nodes that are
not of valence four) are admitted in the orange part of
the mesh. In general, for CFD, gradients are calculated
more accurately if the cells are aligned to the streamlines,
particularly in the boundary layer, and along the shock
represented in red ( ) too. However, unlike boundary
layers, mesh refinement is less restrictive near the shock
to compute it accurately.

In this work, supersonic bodies are completely immersed
in the fluid and a single wall is considered. The far field
plotted in blue ( ) is a smooth boundary (circle, ellipse),
far from the physical phenomena to simulate. In this way,
the flow structures around the vehicle do not impact the
far-field boundary conditions. As the accuracy of the sim-
ulation is not needed in this area, there is no hard con-
straint on cell quality near the far-field boundary.

The thin region in front of the vehicle (on the left side
of the vehicle in Fig. 2) is the key part that will govern
the simulation. In this very specific zone, the mesh has to
be as regular as possible, and the singular nodes are not
admitted.

2.2 Approach overview

Let Ω be a 2D domain bounded by an inner boundary,
the vehicle wall BΩV and an outer spherical boundary, the
far-field boundary BΩF F . Let ³ be the angle of attack of
the vehicle, the aim of our approach is to automatically
generate a quadrilateral block-structured mesh QΩ of Ω
that captures the flow around the vehicle and the main
flow direction defined by ³. Other user parameters are
the boundary layer thickness ¶BL along BΩV , an edge size
sw on the wall BΩV , a size sK

w of the first edge on the
wall-normal direction and a global edge size sG. To this
purpose we propose the following method (see Fig. 1):

1. We first discretize the boundary curve BΩV (see Sec-
tion 3.1). This stage requires to preserve geometric
corners and maximum block edge size given as an
input parameter.

2. Then we build several distance fields in order to drive
the advancing front creation of block layers. Those
fields are fused into a single one, called d, which have
the property that any point p P BΩV verifies dppq < 0
and any point p P BΩF F verifies dppq < 1 (see Fig. 1.b
and Section 3.2.1).

3. We extract a gradient field ∇d from one of the pre-
viously computed distance field and combine it with
a constant vector field that represents the flow direc-
tion to produce the vector field v that captures both
wall orthogonality and the flow direction (see Fig. 1.c
and Section 3.2.2).

4. The scalar field d and the vector field v drive the
creation of a quadrilateral block structure B where
we create each node block in an advancing-front man-
ner. Then curved blocks are created (see Fig. 1.d and
Section 3.3).

5. We eventually generate cells of QΩ by distinguish-
ing the first block layer where we control size transi-
tions and wall orthogonality and the remaining blocks
where we discretize blocks using a transfinite interpo-
lation scheme in each block. To ensure to get edges
of size about sG we apply a simple interval assign-
ment algorithm along non-constrained block edges
(see Fig. 1.e and Section 3.4).



3. BLOCK-STRUCTURED MESH
GENERATION ALGORITHM

Our approach is inspired by [24] where an advancing-front
algorithm is proposed to mesh the outer space around an
object. Starting from a set of block corners and edges on
the wall of the vehicle, the algorithm uses distance fields
and a vector field to control the layer extrusion process.
To perform our algorithm, the input is a triangular mesh
TΩ of Ω. The first part of the algorithm aims to build
the unstructured quadrilateral block topology, while the
second part will produce the final mesh.

3.1 Vehicle wall block discretization

The first stage consists in discretizing BΩV . To do it we
traverse the vertices v0, ..., vm of TΩ located on BΩV and
we select a vertex vi if and only if it satisfies one of the
following conditions:

• vi is located on an extremum of the boundary profile,
i.e; a vertex of BΩV that minimizes or maximizes the
x or y coordinate.

• vi is a geometric corner of BΩV ;

• the curvilinear distance from the previous selected
vertex and vi is greater than the limit length given
as an input parameter.

Let us note that this approach does not guarantee that
the boundary edges will have the same size. It is not an
issue for our process since those edges will be refined later
to get the final mesh.

3.2 Fields computation

Distance and vector fields are core components of our ap-
proach to drive the layer extrusion. The idea, inspired
by [24] is to mix several fields to know how to insert block
nodes during the layer creation process. In practice, those
fields are discrete and defined at the vertices of TΩ.

3.2.1 Distance fields computation

As in [24], we compute a distance field d by merging two
distance fields: the first one is the distance from the vehicle
boundary BΩV ; the second one is the distance from the far-
field boundary BΩFF . To compute those fields we solve the
Eikonal equation [24] given by

"

||∇d|| < f in Ω,

d|F < 0.
(1)

In this equation, Ω Ă R
n is the physical domain, f is

a known function, || ¨ || is the Euclidean norm, F is the
front and d is the distance to this front. In this work, f is
considered constant and equal to 1. The problem is solved
on TΩ.

The first field dV in Figure 3.a is the distance field from
the vehicle boundary (BΩV ) :

"

||∇dV || < 1 in Ω
dV |BΩV

< 0
(2)

The second field dF F in Figure 3.b is the distance from
the far-field boundary (BΩF F ) in Figure 2 :

"

||∇dF F || < 1 in Ω
dF F |BΩF F

< 0
(3)

The third field d represented in Figure 3.c is a combination
of the two fields dV and dFF :

d <
dV

dV ` dF F

. (4)

The combination of the two distance fields makes it pos-
sible to obtain a field d normalized between r0, 1s on the
domain. This field d verifies 0 ď dpxq ď 1, @x P Ω and
the boundary conditions d|BΩV

< 0 and d|BΩF F
< 1. This

mixed field ensures us to reach the far-field for the same
layer during the extrusion, it prevents the front to divide.

(a) dV (b) dF F

(c) d

Figure 3: The distance fields computed on the NACA 0012
airfoil geometry [26].

3.2.2 Vector field computation

In combination with the previously defined distance field
d, we compute several vector fields to drive the layer cre-
ation. In supersonic flow simulation, we must particularly
care about the front of the vehicle, its near boundary and
global mesh direction in the back of the vehicle. We drive
the mesh behaviour in the back area with the angle of at-
tack ³, which is flow-related information. To this purpose
we define the vector field u8 as being constant on Ω and

equals to the far-field flow direction, u8 <

ˆ

cosp³q
sinp³q

˙

.



For the front of the vehicle, we consider two possible op-
tions based on the previously-computed distance fields.
The first vector field we use is the gradient of the distance
field dV , noted ∇dV , and the second one is the gradient of
the mixed distance field d, noted ∇d. We compute these
vector fields at the vertices of TΩ with the Least Squares
fit of Directional Derivatives (LSDD) method [27]. Let us
note vfront the vector field selected between ∇dV and ∇d.

Vehicle

Flow u∞

AoA

α

xfront xback

vfront

vtransit

vback

Figure 4: Linear transition between the front and back
vector fields.

In order to consider both the front and back vector fields,
we eventually compute the vector field v as a linear com-
bination of those two vector field in a transition area (see
Fig. 4). Two physical limits are set by the user in Ω, xfront

and xback. For each node ni P TΩ at point p < txi, yi, ziu

• if xi ă xfront, then vi < vfront,i,

• if xi ą xback, then vi < vback,i,

• if xfront ď xi ď xback, then vi < p1 ´ ¹qvfront,i `
¹vback,i,

where ¹ <
xi´xfront

xback´xfront
is a damping parameter between

0 and 1. Figure 5 illustrates some of the different vector
fields we use. Note that by default, we normalize all the
vector fields as we only use the field direction and not its
magnitude.

3.3 Blocking generation

We build the block structure using an advancing-front ap-
proach (see Algorithm 1). We know a priori the number of
layers NL that will be generated. At each step i, we build
a complete layer of quadrilateral blocks, that we denote
Li. The new inserted nodes and edges define the extru-
sion front, noted Fi, built from the nodes of the front
Fi´1. They share common properties:

• All the nodes of Fi are at the same distance dFi
con-

sidering the distance fields computed in Section 3.2.1.
We use the distance field dV for F1 and the distance
field d for Fi with i ą 1. This way, we ensure the
nodes of the front F1 are all at a distance superior
to the boundary layer thickness imposed by the user.

(a) ∇dV (b) u8

(c) v

Figure 5: Vector fields computed on the NACA 0012 ge-
ometry. The vector field (c) is a mix from ∇dV (a) for
x ă 1.5, and u8 (b) for x ą 5.0. The damping zone is for
x P r1.5, 5.0s and the angle of attack ³ is equal to 150.

In another hand, all the nodes Fi are on a same level
set and the front can not separate.

• Each node of Fi is connected by edges to two other
nodes on the front of Li;

• The front Fi forms a single loop.

We generate the blocking structure by inserting one layer
at a time in an independent way. The process is the same
for all the layers (line 4 of Algorithm 1 and Section 3.3.1)
except for the first boundary layer (line 1 of Algorithm 1
and Section 3.3.2).

Algorithm 1 Extrusion algorithm

Input: TΩ, F0 nodes, distance field d, distance field dV ,
vector field v, boundary layer thickness ¶BL

Output: Blocking B

1: L1 Ð compute1stLayer(L0, dV , v, ¶BL)
2: layer_step Ð 1/NL

3: for all i P 2, ..., NL do

4: Li Ð computeLayer(Li´1, d, v, i*layer_step)
5: end for

3.3.1 Block layer generation

We generate a complete layer of quadrilateral cells follow-
ing Algorithm 2. The algorithm starts from the first front
of nodes and edges F0 which corresponds to the discretiza-
tion of BΩV .



Front node location. Let us consider the generation of
Fi from Fi´1. For each node n

j
i´1

of Fi´1, we compute

the ideal location of the next node n
j
i on Fi (Line 3 of the

Algorithm 2) by solving the advection equation

BOM

Bt
< v (5)

using a 4th order Runge-Kutta method. The origin node
O<n

j
i´1

is advected along the direction of the vector field
v, until his distance dnj in the distance field d reach dFi

.
We obtain then the point M<n

j
i . Unlike [24], we define

the position of a new node by decoupling the distance
to be covered, provided by the distance field d, from the
direction to be followed, provided by the vector field v.
This way, characteristics of the flow such as the angle of
attack ³ are taken into account in the vector field built
for the extrusion.

Once those positions computed, we check some validity
rules to ensure that the quad blocks of the layer Li have
the adequate shape. Those rules are similar to the ones
introduced by Blacker et al. [25] but used both geo-
metric and physical criteria to classified nodes of Fi´1: we
consider the geometrical shape of the quadrilaterals and
the alignment with vector field v. According to this classi-
fication, we are going to insert or erase some nodes in Fi.
This process ensures a strong property of the computed
layer: all the nodes of Fi are at the same distance dFi

along the input distance field. This property ensures that
the front cannot separate and that all the nodes will reach
the outer boundary at the same time on the last layer.

Algorithm 2 ComputeLayer

Input: TΩ, Fi nodes, distance field d, vector field v, dis-
tance dFi

of the nodes in the distance field d

Output: Quad blocking, and a set of nodes and edges of
the layer Fi`1

1: for all node n
j
i P Fi do

2: n
j
i`1

Ð ComputeIdealPosition(nj
i , dFi

, d, v)
3: end for

4: while there is a singular node nk
i P Fi do

5: nk
i Ð getSingularNode(Fi, singu_type)

6: if singu_type is 0 then

7: Fi`1 Ð Fi`1 ` tinsertQuadAtPoint(nk
i )u

8: else if singu_type is 1 then

9: Fi`1 Ð Fi`1 ` tcontractQuadAtPoint(nk
i )u

10: end if

11: end while

Figure 6 represents the extrusion of regular blocks on a
layer. In Figure 6.a, a small part of Fi´1 (where i <
3) is plotted in red ( ) and previously generated blocks
(previous layers) in light blue ( ). If there is no conflict
on the layer due to block expansion or shrinking, then
all the blocks are built in a regular way, and the front
nodes of layer L3 are now the input for another step of
the Algorithm 2 (see Fig. 6.b).

Block insertion. To avoid blocks of poor quality, we allow
the insertion of blocks in areas specified by the user. As
explained before, to create a layer Li, each node of Fi´1

n0
2n1

2 n2
2

n0
3n1

3 n2
3

(a)

n0
2n1

2 n2
2

n0
3n1

3 n2
3

(b)

Figure 6: Regular layer computation.

generates a node of Fi at the distance di in the distance
field d, following the vector field v. Let us consider two
nodes n

j
i´1

and nk
i´1 of Fi´1 sharing an edge. They are

respectively going to generate the nodes n
j
i and nk

i of Fi,
and we may insert the block defined by pnj

i´1
, n

j
i , nk

i , nk
i´1q.

Depending on quality angle, we can reject this block. For
instance, on Figure 7.a, the node n0

2 will generate the node
n0

3 and the two adjacent blocks will not respect our angle
quality. As a consequence, we would generate two nodes
from n0

2 and create an extra block (see Fig. 7.b). In this
work, an extra block is inserted if the four following crite-
ria are respected (using notations given on Fig. 7):

1. The node is in an area where the insertion is allowed
by the user;

2. The adjacent nodes on the same red layer L2 have
not already inserted elements;

3. Ã
4

´Ã1 ă arccos p w¨vn

||w||¨||vn||
q ă Ã

4
`Ã1, where vn is the

value of the vector field at the position of the node;

4. arccosp w¨a
||w||¨||a||

q ` arccosp w¨b
||w||¨||b||

q ą 3Ã
2

.

Where Ã1 < 0.174 is an arbitrary tolerance corresponding
to 100. It is common to take the aspect ratio between
two opposite edges as an insertion or shrinking criterion.
However, for the applications of this work, there is no
constraint on this specific ratio.

To compute the position of one of the two new nodes that
are used to create the inserted block, we proceed as follows.
To build the node n3

3, the point n0

2 in Figure 7 is advected
following the constant vector w

||w||
` a

||a||
until reaching the

distance dFi
in the distance field d. We do the same for

the second point.

n0
2n1

2

n2
2

n0
3n1

3

n2
3
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Figure 7: Block insertion.



Block shrinking. The block shrinking operation is the
opposite of the block insertion. Considering three consec-
utive nodes n

j
i´1

, nk
i´1 and nℓ

i´1 of Fi´1, that respectively

generate the nodes n
j
i , nk

i and nℓ
i of Fi, we apply the

shrinking process when we meet the configuration of Fig-
ure 8.a, where the three generated nodes are geometrically
close. More specifically, we fuse the three generated nodes
into a single one. To detect the places where the opera-
tion is necessary, the proximity of the ideal positions of the
nodes of the next layer is controlled with a tolerance. Af-
ter the fusion, the adjacent nodes on the layer (connected
by an edge) are not able to perform an insertion or fusion
operation.
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n3
2

n4
2

n0
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2
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2
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3

n3
3

n4
3

(b)

Figure 8: Block shrinking.

Figure 9 illustrates how blocks can be inserted and shrunk
in a whole domain on the mars spacecraft geometry [28].

Figure 9: Block shrinking in orange ( ) and insertion in
blue ( ) on the second layer.

3.3.2 Boundary Layer Extrusion

The boundary layer is a thin layer close to the wall where
the fluid flow is dominated by viscosity effects. We take
a particular care to this area, which we manage with the
Algorithm 3. The distance field considered is dΩV

, and
the distance of the layer is supposed to be higher than the
thickness of the boundary layer ¶BL.

Boundary layer insertion. As explained before, insertions
may be performed in the boundary layer. This operation
must remain as occasional as possible to not introduce
many singularities in the near boundary layer. The in-
sertion is performed only in the case there is a very sharp
angle on the geometry (for example the NACA 0012 airfoil
in Fig. 3). This insertion is always a two-block insertion

Algorithm 3 Compute1stLayer

Input: TΩ, F0, expected boundary layer thickness ¶BL,
distance field dΩV

, vector field v

Output: Quad blocks of the layer L1

1: for all node n
j
0

P F0 do

2: n
j
1

Ð ComputeIdealPosition(nj
0
, ¶BL, dΩV

, v)
3: end for

4: B Ð ComputeBlocks(L1)

and is performed as shown in Figure 10. In Figure 10.a,
the front considered for the extrusion is F0, and the nodes
of this front are plotted in red. Let us remember that F0

is on the wall geometry. Each node of F0 computes the
ideal position of the next node. At the position of the
node n0

0, a sharp angle is detected on the geometry sur-
face. Then, two blocks are inserted. If the inserted upper
right block of Figure 10 is considered, the two new block
corners are placed this way. The first one, connected to
n1

1 by a block edge, is the position pn0

0

of the node n0

0

advected at the distance ¶BL in the distance field dΩV

following a constant vector field equal to the vector c1

in Figure 10.a. The second block corner is placed at the
position p < pn0

0

` l1
c1`w

||c1`w||
. The second block of this

insertion is built the same way, from the node n2

0 on the
other side of n0

0. Figure 11 illustrates how this two-block
insertion is performed on the boundary layer blocking.
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Figure 10: Block insertion on the boundary layer.

Figure 11: Insertion of two blocks ( ) on the boundary
layer for the diamond airfoil. This insertion in the front of
the airfoil to ensure good quality elements in this sensitive
area.



3.4 From blocks to quadrilaterals

Once the block structure built, we generate the final quad
mesh. It requires to assign the right discretization to every
block edges and to discretize each block with the appro-
priate regular grid. The boundary layer is meshed con-
sidering strong constraints about wall-orthogonality and
aspect ratio.

3.4.1 Interval assignment

The interval assignment algorithm aims to select the num-
ber of mesh edges for each block edge. This is funda-
mentally an integer-valued optimization problem that was
tackled in several works [29, 30, 31]. In particular, an
incremental interval assignment using integer linear alge-
bra is proposed by [31] and gives very satisfying results
in terms of target size respect and speed performance. In
this work, we follow a simple procedure that we describe
thereafter. Even if the problem is initially composed of
N integer unknowns, with N the number of block edges,
it can be reduced considering the topological chords of
the blocking. A topological chord C is defined as a set
of opposite edges [32] (see Fig. 12). As a conformal mesh
is expected, all the edges teiui“1..nc of the same chord
C need to have the same discretization. Otherwise, the
blocking discretization is not valid.

Then, starting from a block structure composed of N

edges, the problem can be reduced to n integer variables,
where n is the number of topological chords in the block
structure. For instance, in the case of Figure 12, there are
eight chords hence eight integer unknowns.

Figure 12: Purple topological chord C composed of the
blue edges of the blocking.

This number of unknown is going to decrease again due to
our application case where the thin boundary layer along
the vehicle wall is handled specifically. Let us consider
Figure 13 where the blue edges are on the vehicle wall and
the green ones in the boundary layer. The discretization of
the blue edges is controlled by an input parameter sw that
fixes a target length of each blue edge, and so propagate
along the corresponding chords. The discretization of the
green edges helps to capture the boundary layer flow. This
discretization is again an input parameter, which strongly
depends on the simulation. Again some unknowns are so
removed.

It is important to notice that if two edges of a chord Ci

have different hard constraints, the problem can not be
solved and the mesh is not generated. In our case, it
should not happen. The simple structure of our problem
(full conform block structure) and the few number of hard

constraints allows us in practice to avoid to build over-
constrained systems.

Figure 13: The block edges hard constrained in our algo-
rithm are set in blue and green.

3.4.2 Boundary layer meshing

Boundary layer discretization. This part is about the
discretization of the topological chords constrained by the
blue and green edges in Figure 13. In this part, the block
edges are linear. The objective of the blocking is to split
the domain into a small set of blocks. As a direct con-
sequence, when the geometry is curved (as the NACA
0012 airfoil), we do not obtain a good discretization of
the vehicle wall and some parts of the boundary layer
can be totally out of Ω. To solve it, we first create the
mesh edges corresponding to the blue block edges in Fig-
ure 13: each block edge is linearly split by inserting k

points tpiui“1,...,k, that are projected onto BΩV afterward.
For each point pi, we keep the offset vector v

proj
i used

to project pi onto BΩV . As the boundary layer is very
thin, we apply the same offset vector v

proj
i for the mesh

points used to linearly discretized the opposite block edge
(see Fig. 14). By this way, we avoid to generate tangled
meshes.
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Figure 14: Boundary layer offset.

For the discretization of the boundary layer, we require
three input user parameters, which are: sw, the size of the
final mesh edges on the wall vehicle; nK

w, the number of
mesh edges in the wall-normal direction; sK

w the size of the
first mesh edge in the wall-normal direction. With these
parameters, the edges are set uniformly in the streamwise
direction.

Boundary layer smoothing. Even if the block edges were
placed in an orthogonal way, the computation remains lo-
cal for each node. As a consequence, there is no reason
for the resulting mesh to be orthogonal to the wall (see



Fig. 16.a). At this stage, we perform a smoothing algo-
rithms on the boundary layer blocks that have an edge on
BΩV . This smoothing aims to enhance the orthogonality
of the first cells in the block. The smoothing algorithm
[33] is performed on each block. It is a modification of the
Line-Sweeping method introduced by J. YAO [34], which
was specifically developed for structured meshes.

ni−1,j−1

ni−1,j

ni−1,j+1

ni,j+1 ni+1,j+1

ni+1,j

ni+1,j−1ni,j−1

nt
i,j

Vj+1

Vj

Vj−1

Hi+1Hi

Hi−1

X2

−→n1

−→n2

−→n

X1

nt+1

i,j

Figure 15: Modified Line-Sweeping method on an internal
node in a block.

The Line-Sweeping method is a geometric, local, iterative,
and fully explicit method that aims to uniformize the cell
sizes of a block. Let B be a block of size Nx ˆNy, and ni,j

be a node in B with 0 ă i ă Nx ´ 1 and 0 ă j ă Ny ´ 11.
To compute the new position at the iteration t ` 1 by
the Line-Sweeping, we consider the stencil made of the six
black nodes on Figure 15. From this stencil, six points
are computed, the three plotted in red ( ) (Vj´1, Vj ,
Vj`1) and the three in green ( ) (Hi´1, Hi, Hi`1). Red
points are placed in the middle of each vertical branch.
For instance, Vj`1 is in the middle of the branch made up
of the three nodes ni´1,j`1, ni,j`1, ni`1,j`1. In the same
way, the three green points are placed in the middle of each
horizontal branch. For instance, Hi´1 is at the middle
of the branch ni´1,j´1, ni´1,j , ni´1,j`1. From these six
points, two branches of two segments each are built, the
red one (Vj´1, Vj , Vj`1) and the green one (Hi´1, Hi,
Hi`1). The Line-Sweeping places the new position of the
node ni,j at the iteration t ` 1 as being the intersection of
these two branches, represented by the orange point X2.
A damping coefficient ¹d P r0, 1s chosen by the user can
be added to enhance the convergence.

As the Line-Sweeping does not provide the near-wall or-
thogonality needed for this work, a modification was in-
troduced in [33]. Assuming the block edge on the wall
is at the index j < 0. For each node ni,j as the
one in Figure 15, we compute the position X2 with the
Line-Sweeping method, and another orange point (X1)
is placed. Two vectors n1 and n2 ( ) are computed,
normal to the respective segments rni´1,j´1, ni,j´1s, and
rni,j´1, ni´1,j´1s. Then, the sum n < n1 ` n2 is consid-
ered to place the point X1. This new point is at the in-
tersection of the dashed orange line ( ) passing through
the point ni,j´1 and carried by the vector, and the green
branch. A new orange branch X1, nt

i,j , X2 ( ) is con-

1which means ni,j is not a boundary node.

sidered. According to the index j of the node considered
in the block, the new point nt`1

i,j is placed on the orange

branch at the position pt`1

i,j < ³µX1 ` p1 ´ µqX2. In this

work, µ < p j´1

6pNy´1q
q0.01. This way, the closer the node is

to the wall, the stronger the orthogonality is. Figure 16
illustrates how this smoothing stage improves the wall or-
thogonality.

(a) Without boundary
layer smoothing

(b) With boundary layer
smoothing

Figure 16: Comparison of the near wall mesh before and
after smoothing.

Boundary layer refinement. In the wall-normal direction,
a refinement law is performed on any chord containing a
block with a block edge on the geometry (the green edges
of Fig. 13). This implies the cells can be very anisotropic
which is not a problem since gradients are in the wall-
normal direction. Considering a vector of adjacent nodes
n1, ..., nN`1. Each node ni is a 1D point at the position
li. According to the refinement law used, the new position
of the node ni is given by

li < l1 ` fnplN`1 ´ l1q (6)

where fn < 1 ` ´ 1´ep

1`ep , p < zp1 ´ i´1

N
q, z < logprq and

r < ´`1

´´1
.

From this law and a set of adjacent edges, the ´ parameter
can be computed using a Newton method and three values:
the sum of the length of the edges, the length of the first
edge sK

w, the number of nodes nK
w. This refinement law is

particularly adapted to the boundary layer where the size
of the first cell can be very small. It avoids to generate
too large cell size far from the boundary layer.

3.4.3 Block discretization

In the case there is no hard constraint on the given chord
C composed of the edges e0, ..., enc , we get the number of
mesh edges for the chord by minimizing:

F ptq <
ÿ

ei

Éipt ´ Tiq
2
, (7)

where Éi is the weight of the edge ei and Ti is the ideal dis-
cretization of the edge ei. To compute Ti, there is a target
parameter sG corresponding to the ideal default size of the
edges of the final mesh. F is a second-degree polynomial
in t made of positive terms that reaches a minimum when
F ptq

Bt
< 0. We have

F ptq

Bt
< 2

ÿ

ei

Éipt ´ Tiq. (8)



So the minimum is

t0 <

ř

ei
ÉiTi

ř

ei
Éi

(9)

Then, we choose the closest integer from t0 as a solution
and so the discretization of the edges of the chord C .

3.4.4 Final curved blocking

It remains to finally mesh the blocks that are not in the
boundary layers. All the block nodes are created and
located using the advancing-front algorithm described in
Section 1. To avoid discontinuities and low-quality cells,
some block edges are not discretized linearly between two
block nodes. In fact, we curve every block edge that has
its two end points located on the same front Fi with i ą 1.
To do it, we build a control point pC and the edge is rep-
resented by a quadratic Bézier curve.

pC

n1
2 n2

2

n1
3 n2

3

Figure 17: Curve block edges as a quadratic Bézier curve.

Let us consider the example of Figure 17, the block cor-
ners n1

3 and n2

3 are on the same front Fi and i ą 1. Then,
the block edge between them can be curved. To build the
quadratic Bézier curve, we choose to insert the control
point pC as the intersection of two lines, the one plotted
in blue ( ) and the one in orange ( ). The blue line
is defined by the point at the block corner n1

3, and the
vector normal to n1

2n1

3. Then, the Bézier curve is con-
trolled by pn1

3, pC , n2

3q. Figure 18 shows how the mesh
blocks are curved with this procedure. After that, every
edge e included curved ones, are subdivided according to
the number of subdivision assign to their chord (see Sec-
tion 3.4.3). We finally perform a transfinite interpolation
scheme to generate the grid structured mesh in each block
that is not located in the boundary layer.

4. RESULTS AND APPLICATIONS

To demonstrate the well-behaviour of our approach, we
tested it onto different types of vehicles. Here, we focus
on a selected set of samples but our heuristic was evaluated
on a larger data set. We first checked the mesh quality and
the impact of some key parameters as the angle of attacks
and the ability to insert/contract quadrilateral blocks in
each layers. Then we consider two validation cases. The
first one is the well-studied case of the NACA 0012 air-
foil [26]. The second one is a two-dimensional supersonic

(a) Linear blocking (b) Curved blocking

Figure 18: From linear (a) to curved blocks (b).

flow around a diamond-shaped airfoil. For this case, an-
alytical solutions are available [35], [36]. The simulations
are run using the open multiphysics simulation software
SU2 [37] and our meshing algorithm is freely available and
implemented in the open-source C++ meshing framework
GMDS [38]2.

4.1 Mesh quality

Figures 19.a and 19.b illustrate the block structures of
two meshes generated with our algorithm. To generate
these meshes, the used angle of attack is ³ < 00. For the
vector field computation, the transition area is set between
xfront < 1.5 and xback < 5.0. For the boundary layer
meshing, we require a thickness of ¶BL < 4ˆ10´2m, nK

w <
100 cells in the wall-normal direction and the size of the
first cell at sK

w < 1 ˆ 10´8m. The minimum number of
block corners on the wall is set to 33 and the number of
layers is set to NL < 4. The size of the edges streamwise
on the wall is sw < 1 ˆ 10´3m. In the rest of the domain,
the edge size is set by default to sG < 1.2 ˆ 10´2m. The
only difference between those two meshes is the permission
to insert blocks during the layer extrusion process for the
block-structure generation (see Fig. 19.b). The number of
cells with high scaled jacobian (as defined in VERDICT
[12]) increases for the mesh generated with inserted blocks
(see Fig. 19.c and 19.d).

Figure 20 represents the same mesh generated in Fig-
ure 19.b but with an angle of attack ³ < 150. Unlike
the previous blocking, we see the block edges align with
the flow behind the airfoil in Figure 20.a. Figure 20.b
shows the quality of cells in the mesh. In comparison with
Figure 19.d, the geometric quality of cells is not degraded
by taking into account this angle.

Figure 21 shows a mesh generated on the diamond airfoil
geometry. For this generation, the angle of attack is set to
³ < 00. The vector field is computed with the parameters
xfront < 1.5m and xback < 6.0m. The number of layers
is set to NL < 4 and the block insertions are allowed.
For the boundary layer, a thickness of ¶BL < 5 ˆ 10´2m
is required, with nK

w < 100 cells in the wall-normal direc-
tion and the size of the first wall-normal edge is set to
sK

w < 1 ˆ 10´9m. The size of the edges on the wall is set

2https://github.com/LIHPC-Computational-Geometry/
gmds.

https://github.com/LIHPC-Computational-Geometry/gmds
https://github.com/LIHPC-Computational-Geometry/gmds
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Figure 19: Mesh quality comparison between a block
structure generated without (a) and with block inser-
tions (b).
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Figure 20: Mesh generated with an angle of attack ³ < 150

(a) and the quality of the cells (b).

to sw < 4 ˆ 10´3m, and the default size of edges in the
whole domain is sG < 1 ˆ 10´2m. We require at least
4 blocks in the boundary layer. In the boundary layer,
200 iterations of the modified line-sweeping smoother are
performed with a damping parameter ¹d < 0.2. This way,
the mesh computed is orthogonal near the wall boundary
(Fig. 21.b). The block structure in Figure 21.a shows two
blocks inserted at each end of the geometry. Two addi-
tional blocks are inserted on the second layer, at the back
of the airfoil. The algorithm provides good cells quality
considering the scaled jacobian plotted in Figure 21.c.

4.2 Navier-Stokes equations

The Navier-Stokes equations are nonlinear partial differen-
tial equations used in fluid mechanics to describe the flow

(a) Blocking on the diamond airfoil

(b) Cells orthogonality
near-wall boundary
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Figure 21: Scaled Jacobian for the mesh generated on the
diamond airfoil.

of a viscous and compressible fluid. The first equation

BÄ

Bt
` ∇ ¨ pÄVq < 0 (10)

is the continuity equation. The momentum conservation
equations are

BpÄVq

Bt
` ∇ ¨ pÄVVq < ∇ ¨ pÄ ´ pIq ` Äg. (11)

Then, the energy equation is given by

BpÄEq

Bt
`∇¨pÄEVq < ∇¨ppÄ ´pIq¨Vq`Äg¨V´∇¨Φ. (12)

In these equations, t is the time (s), Ä is the fluid density
(kg.m´3), V is the fluid particle velocity vector (m.s´1), p

is the pressure (Pa), Ä is the viscous stress tensor, I is the
unit tensor, g is the gravity vector (m.s´2) and Φ is the
heat flux vector (J m´2 s´1). In this work, we consider
that the fluid is characterized by a perfect gas equation of
state. The simulations are performed with the Reynolds
Averaged Navier-Stokes (RANS) solver of SU2 [37]. Thus,
the viscosity and turbulence are taken into account in the
near-wall region. Here, the k-É SST turbulence model is
used [39].

4.3 Subsonic NACA 0012 airfoil

M8 AoA ³ Re T8

0.3 150 3 ˆ 106 293K

Table 1: Simulation parameters for the subsonic NACA
0012 airfoil.

A simulation of the NACA 0012 airfoil is performed with
the data set in Table 1 to validate the accuracy of the



results on our generated mesh. The angle of attack is ³ <
150, the Mach number is M8 < 0.3, the Reynolds number
is set to Re < 3 ˆ 106 and the temperature T8 < 293K.

In Figure 22, the pressure coefficients

CP <
p ´ p8

1

2
Ä8u2

8

(13)

where p is the pressure and Ä the density, are compared.
For a Reynolds number of Re < 3 ˆ 106, the experimental
data set of Gregory and O’Reilly [40] seems to be the
most appropriate for CFD validation [26]. These experi-
mental data used as reference points for the surface pres-
sure coefficients are plotted with black dots (•). The pres-
sure coefficient plotted with red crosses (+) is the result
of the simulation of this configuration on the mesh gener-
ated by our algorithm with the same parameters than the
one of Figure 20. The two red curves are the result of the
simulation plotted on both sides of the airfoil. However,
the experimental data set gives only the result on one side
of the airfoil. The results obtained with this configuration
on our mesh are in good agreement with the experimental
results.

Figure 22: Pressure coefficient on the NACA 0012 airfoil
for the simulation parameters in Table 1.

4.4 Supersonic diamond airfoil

βu

u1 u2

βb

b1 b2

2θ Airfoil

Flow u∞

AoA

α

Figure 23: Scheme of the various zones and angles around
the diamond airfoil [41].

In this part, a two-dimensional supersonic flow around a
diamond-shaped airfoil is simulated. Figure 23 represents
the geometry of the airfoil and the different areas and
angles of the supersonic flow. Here, the viscosity effects
are taken into account. As a consequence, the value of
velocity on the wall is zero. For the case of the supersonic
diamond airfoil, the analytical angles of the oblique shocks
represented in red ( ) are given by Liepmann et al.

[36]. The shock direction depends on the Mach M8, the
angle ¹ of the geometry, and the angle of attack ³.

M8 AoA ³ Re T8

1.5 30 3 ˆ 106 293K

Table 2: Simulation parameters for the supersonic dia-
mond airfoil.

In this study, ¹ < 50 and the chord of the airfoil is 1m.
For the first simulation, the parameters in Table 2 are
set. In Figure 24, the mach number distribution is plotted
and compared to the analytical positions of the shocks.
The value of the computed angle after the simulation is
´u < 43.10, and the value of the angle ´b is 45.70 which
represents an error of 10 compared to analytical values.
For this configuration, mach numbers are constant in the
area u1, b1, u2 and b2. In the zone u1, we reach a constant
mach number of Mu1

< 1.42 in Figure 24, and Mb1
< 1.19

for the area b1. These results are consistent with those
given by the tables [35]. Regarding these results, the mesh
generated by our algorithm captures the expected physics.

Figure 24: Mach-number distribution around a diamond-
shaped airfoil immersed in a supersonic flow field at M8 <
1.5, Re < 3 ˆ 106 and ³ < 30.

5. CONCLUSION

With this work, we propose a solution to automatically
generate 2D quadrilateral block-structured meshes that
are dedicated to flow simulation around a single vehicle.
We take into account the geometrical shape of the domain
and some simulation parameters like the angle of attack
and the boundary layer thickness. First obtained results
demonstrate that the generated meshes are usable for sub-
sonic and supersonic flow simulations.

A few minor adjustments have to be made in the near fu-
ture like improving the mesh size transition between the
boundary layer and the other layers or integrating some
mesh smoothing techniques. But the main part of the fu-
ture work is twofold: first, we will extend the method to
3D. We are already able to generate the driving distance
and vector fields in 3D and we will extend now the work
of [24] to high-order blocks; second, we intend to use this
approach in a loosely-coupled adaptive loop. We propose
to iteratively adapt the distance and vector fields to en-
compass directional and size fields provided by a previous
simulation code run.
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