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Abstract In this paper, we present a method for constructing a quad mesh from

an initial cross-field given by the user. The idea of this approach is to provide a

framework to process any cross-field in order to generate a quad mesh and thus

benefit from the properties of the field in the resulting mesh. With this point of view,

we handle the case of non-simply connected domains and we also address the notion

of singular point placement on the edge, which allows us to handle geometries of

arbitrary index. Finally, we give an extension of the method to non-planar surface

manifolds.

1 Introduction and Related work

Several numerical schemes used for numerical simulation are based on the imple-

mentation of a quadrilateral or hexahedral mesh, as they offer numerous advantages.

In mechanics, quadrilaterals are interesting because similar results can be obtained

by using modified first-order quadrilaterals instead of quadratic simplexes. Similarly,

for the propagation of electromagnetic waves, we observe that quadrilaterals are very

efficient due to their naturally tensorial structure [1]. In fluid mechanics, quadrilater-

als provide a simple way to deal with anisotropic phenomena within boundary layers

[1]. However, while the generation of symplectic meshes (triangles, tetrahedrons)

has been well developed for more than half a decade, while the generation of quadri-

laterals or hexahedrons is more problematic. Actually it is difficult to simultaneously

respect every constraint required by the properties of a good hexahedral mesh, align-
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ment of elements with the edge of the domain, size of elements, and mesh quality

(see [2]).

Among methods developed to create quadrilateral meshes, such as tri-to-quad

conversion [3], SQuad [4], Blossom-Quad [5], the Cartesian grid method [6], the

method of frontal advance (also called the paving method) [7, 8], and medial-axis

based decomposition methods [9, 10], an interesting one is based on cross-fields

analysis [2]. The idea involving cross-fields is to simulate orientation properties

of quadrilaterals to derive a proper partitioning of the domain into four-sided sub-

domains. They are used for the first time in computer graphics applications to control

surface mapping for non-photorealistic rendering, texture synthesis and remapping,

and global parameterization [11, 12, 13]. A cross-field is a field structure that binds

each point of the domain to ”a cross”, i.e. a given vector and its rotations with an

angle of ġ
ÿ

2
, where ġ ∈ ç0, 3è. In [2], the authors generate such cross-fields by

propagating the crosses from the outer normal of the domain from the edge of the

domain (see details in [2]). In [14], the authors addresses constructing quad-mesh

on surface patches and in [15], the quad-mesh generation on manifold surfaces is

discussed. One goal is to build a smooth cross-field that is aligned with the domain

boundary. In the literature, the approach often used consists in minimizing an energy

that characterizes the variations of the cross-field [16].

inf
ī
ā (ī) =

1

2

∫

¬

|∇ī |2Ěý +
1

4Ċ2

∫

¬

( |ī |2 − 1)Ěý. (1)

The solution field of (1) is used to guide the generation of the quadrilateral mesh.

To do this, field lines are integrated from the singular points of the cross-field. These

field lines called separators allow to partition the domain into regions of 4 sides that

are then filled with quadrilateral meshes (see Figure 1).

The mesh obtained then depends on the location of the singular points (corners of

subdomains) in the cross-field. Unfortunately, this distribution can sometimes lead

to invalid or unintended partitioning. The first one notably occurs on ultra-stretch

domains. The second one refers to partition shapes leading to resulting cell sizes

that are widely inhomogeneous (see Figure 2). In other words, we do not control the

appearance of singular points nor their distribution.To bypass these problems, one

should aim at controlling the kind and location of singular points in the cross-field.

To do this, one can see that a generator of quadrilateral mesh can be achieved

by analyzing how cross-fields are related to the Ginzburg-Landau energy, as studied

in [16, 17]. Jezdimirović and al [18] propose an algorithm based on a user-defined

singularity model as input, possibly with high valence singularities. Alexis Macq and

al [19] give a formulation of the Ginzburg-Landau energy allowing the imposition of

internal singularities by substituting them with little holes drilled in the domain. The

Ginzburg-Landau energy of the crossed field on the drilled domain is then calcu-

lated by solving a linear Neumann problem. They also propose a reformulation of the

Ginzburg-Landau energy to handle boundary singularities. However, the complex

framework of the Ginzburg-landau theory does not allow to easily take into account
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Fig. 1 Quad mesh from Ginzburg-Landau Energy

Fig. 2 Inhomogeneous mesh

non-planar geometry. Moreover additional problems arising from usual industrial

meshing context such as handling with piecewise materials, piecewise inhomoge-

neous boundary conditions or non-analytic geometry, are not suitably addressed by

these methods.
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The idea we propose to develop in this paper is to consider the cross-field as an

independent input for the meshing method, thus allowing us to look for a better

candidate. On one hand, we can expect different singular point distributions (and

thus more homogeneous meshes), an easier partitioning on non-planar surfaces, and

a tool to address non-simply connected domains. On the other hand, some properties

will have to be formulated to ensure that the cross-field leads to a full quad mesh, and

operations must be performed on the cross-field to satisfy some boundary conditions

arising from partitioning and handling of non-simply connected domains.

To illustrate the purpose of this article, we consider an eigenmode of the Laplacian

as an example in Figure 3. The cross-field is constructed from the quarter angle of

the gradient of this eigenmode (the same construction can be applied to isolines).

We observe that the extrema of an eigenmode of the Laplacian, and therefore of

the corresponding cross-field, on the domain are equidistant from the boundary and

from one another. This results in a more homogeneous mesh using our method.

Fig. 3 A quadrilateral mesh constructed from eigenmode solutions.

Another example is given by Viertel et al. in [16], and in most Ginzburg-Landau

based quad mesh papers, as the first step of the process. Cross-fields are obtained

from representation fields given in the complex plane by:
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İ ∈ C ↦−→
∏

ğ

(
(İ − ėğ)

|İ − ėğ |

) Ěğ
4

∈ C, (2)

where each ėğ ∈ C is a singular point of the field and Ěğ/4 its associated index. The

same construction as previously is performed and the resulting cross-field and final

mesh are depicted in Figure 4. It can be noted that the fields in equation (2) are not

straightforwardly used in [16], but a correction process is first applied to enforce a

prescribed alignment. Our method will thus propose an alignment phase that works

similarly to this step.

Fig. 4 A quadrilateral mesh constructed from the cross-field of equation (2). Singular points ėğ are

plotted in red.

The remainder of this paper is organized as follows. First, in section 2, we in-

troduce some mathematical notions used to express the constraints required on a

field of crosses for the generation of quadrilateral meshes, discuss the alignment of

a given field of crosses with respect to the domain boundaries for planar domains,

and address the notion of singular border points. We then extend the method to

non-simply connected domains in section 3. Finally, in section 4, we discuss the case

of non-planar surfaces, whose main difficulty is the absence of a global reference

frame.



6 Kokou Dotse, Vincent Mouysset, Sébastien Pernet

2 Quadrilateral mesh from a cross-field

For any given domain ¬, the idea is to find a subdivision of ¬ into subdomains with

four sides. Suppose that we can partition ¬ using the field lines of a vector field

defined on ¬. To establish regions, it is imperative to guarantee that the streamlines

(definition in section 2.1), can intersect each other. To this aim, we use a particular

vector field called a cross-field. A cross-field is a map that associates four directions

orthogonal to each other to each point (see section 2.1). By constructing the cutting

of ¬ with streamlines whose origins are the singular points of the cross-field, we can

create partitions that do not contain any singular points. Let Ā be a partition obtained

in such a way. The only singular points of the field included in Ā then coincide with

the corners of Ā. Applying the Poincare-Hopf theorem (see [16]), it follows that Ā

has necessarily four corners, i.e. it is a four-sided domain. Meshing with quads a

four-sided domain is trivial. For instance, we can use transfinite interpolation (see

[20]) to generate a regular mesh on a domain with four sides. Finally, we achieve a

quad mesh of whole domain (see Figure 1).

Lately, as announced in the introduction, in this paper we would like to have

the possibility to choose any cross-field and use it to generate a quadrilateral mesh.

Contrary to the classical approach of directly generating a cross-field aligned with

the edge of the domain, we would rather act on any cross-field provided on the

domain. The advantage of such a choice would be that the generated mesh can be

aligned with the chosen field, thus making the mesh inherit the properties of the

cross-field.

Throughout this section, we will assume that ¬ is a bounded, connected domain

in R2 with a piecewise-smooth boundary.

2.1 Cross-fields definition

A two dimensional cross is defined by:

ę(ĉ) = {(ęĥĩ(ĉ + ġÿ/2), sin(ĉ + ġÿ/2)), ġ ∈ [[0; 3]]} (3)

Let C = {ę(ĉ), ĉ ∈ R}. By associating to each point Ħ of ¬ an angle ĉ (Ħ), we

define the cross-field on ¬ as a map ī : Ħ ∈ ¬ ↦−→ ę(ĉ (Ħ)) ∈ C ∪ {0} and which

eventually vanishes at a finite number of points, called the singular points.

Let ę0 be the cross formed by the x-axis and the y-axis of a local planar coordinate

system, for a cross ī(Ħ) given at a point Ħ ∈ ¬, its principal angle ĉī (Ħ) is given by

the minimal rotation between ę0 and ī, i.e.:

ĉī (Č) = min
ĉ
{ĉ ∈ R/ī = Ď(ĉ)ę0}, (4)

where Ď(ĉ) denotes the rotation of angle ĉ.



Title Suppressed Due to Excessive Length 7

Given Ą(ĩ), with ĩ ∈ [0, 1], be a C1 curve parametrized on the domain ¬, and let

ĉĄ(ĩ) denote its derivative. We say that Ą is a streamline of ī if, for all ĩ ∈ [0, 1],
there exists ġ ∈ ç1, 4è such that the cross-product ĉĄ(ĩ) ' īġ (Ą(ĩ)) = 0. Here,

īġ (Ą(ĩ)), ġ ∈ ç1, 4è refers to the branches of the cross-field ī at point Ą(ĩ). A

separatrix of a cross-field is a streamline that begins or ends at a singularity.

2.2 Index

A number called the index, noted ğĚī, is associated with each singular points. It

quantifies the number of times the field turns onto itself around the point Ħ. At any

point Ħ ∈ ¬\ĉ¬, it is evaluates as (see [17]):

ğĚī (Ħ) =
1

2ÿ

∫

Ą

Ěĉī, (5)

where Ą : [0, 1] −→ ¬ is a simple closed curve around Ħ containing no other

singular point. Note that if Ħ is not singular, ğĚī (Ħ) = 0.

Applying equation (5) with respect to ĉ¬, we can define the following global

quantity on ī (see section 2.3):

Ěěĝ(ī, ĉ¬) =
1

2ÿ

∫

ĉ¬

Ěĉī, (6)

which will allow the following to define a general constraint on the initial cross-field.

In the literature, Ěěĝ(ī, ĉ¬) is commonly referred to as the Brouwer degree.

These points are later chosen to be the origin of the streamlines used to partition

the domain. Practically, as done for instance in [2], we build the separatices from

every singular point and apply a merging algorithm to avoid doubling of lines due

to numerical errors.

As exposed previously, singular points will be used as starting points for separa-

trices. Hence, to define how many separatrices start with each point Ħ, we introduce

the valence of Ħ, denoted Ē (Ħ). It is directly related to the index of the point in the

cross-field and is given by:

Ē (Ħ) = 4 − 4ğĚī (Ħ). (7)

2.3 Compatibility constrain on the cross-field

The Poincaré-Hopf theorem allows us to relate the vector field to the topology of

the domain. This theorem can be extended in the context of cross-field (see [21]). It

states that, for a cross-field ī defined on a domain and whose boundary crosses are

aligned with the outgoing normal of the domain, we have the following relation:
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Ĥ∑

ğ=1

ğĚī (Ħğ) = Ć(¬), (8)

where (Ħğ)ğ∈{1,...,Ĥ} is the set of singular point of ī and Ć(¬) = 2 − 2ĝ − Ę, (ĝ is

genus of ¬, Ę is boundary number of ¬) is characteristic Euler of ¬.

Taking into account the boundary and interior singular points, the formula (8)

becomes:

Ĥĩ∑

ğ=1

ğĚī (ĩğ) +

ĤĘ∑

ğ=1

ğĚī (Ęğ) = Ć(¬), (9)

where (ĩğ)ğ∈{1,...,Ĥĩ } is the set of interior singular point of ī and (Ęğ)ğ∈{1,...,ĤĘ } is a

boundary singular point of ī.

As derived from formula 6, it follows that:

deg(ī, ĉ¬) =

Ĥĩ∑

ğ=1

ğĚī (ĩğ). (10)

Finally, we deduce a compatibility constraint that our cross-field must respect on

¬ with the following formula:

Ěěĝ(ī, ĉ¬) = Ć(¬) −

ĤĘ∑

ğ=1

ğĚī (Ęğ). (11)

2.4 Alignment of cross-field

From the example pictured on Figure 3, we see that the proposed cross-field has

the correct properties. Indeed, on the one hand, the sum of the indexes of the field

is equal to 1 and the domain has two singular boundary points of index 1/4 each.

Relation (11) is verified.

However, when using a cross-field method (summarized at the beginning of section

2) to partition the domain, it is noted that some subdomains deviate from the typical

quadrilateral shape, as shown in Figure 5. This deviation is a result of the cross-field

not being properly aligned with the boundaries of the domain, which is in violation

of the assumptions of the Poincaré-Hopf theorem. As a result, some partitions do

not have four sides.

To address this issue, we will adjust the cross-field to align it with the boundaries

of the domain. Given a cross-field according to the formula (11), the task is to find

a way to align this cross-field with the boundaries of the domain without altering

its initial properties. This can be achieved by finding a scalar field č representing

rotation angles and initial cross-field. Thus we denote the new cross-field:

ÿ = Ď(č)ī, (12)
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Fig. 5 Invalid partitioning obtained from rough cross field extraction of modal solution plotted on

first picture on figure 3

and we want to obtain ÿ = Ċ on ĉ¬, where Ď(č) is given by the equation:

Ď(č) =

(
ęĥĩ(č) −ĩğĤ(č)
ĩğĤ(č) ęĥĩ(č)

)
, (13)

and Ċ is the cross-field associated with the outgoing normal. Our determination of

č is based on the approach of [16]. It entails continuously propagating the angle

difference between ī and Ċ throughout ¬ via the following equation:




△č = 0 in ¬,

č(Ą(Ī)) = č̃(Ą(Ī)) +

ĤĘ∑

ğ=1

ąĉ (Ęğ)1Ą ( [0,Ī ] ) (Ęğ), ∀Ī ∈ [0, 1] .
(14)

In this equation,

• Ą : [0, 1] −→ ĉ¬ is a parameterization of ĉ¬ such that Ą(0) is not a boundary

singular point and Ą(0) = Ą(1),

• č̃ = ĉĊ − ĉī. This quantity is calculated continuously along ĉ¬,

• ąĉ (Ęğ) quantifies the presence of singular points Ęğ . This concept is covered in

depth in section 2.5,

• 1Ą ( [0,Ī ] ) denotes the indicator function.

It can be proven that č(Ą(0)) = č(Ą(1)) and that ∀Ħ ∈ ¬̄, ğĚÿ (Ħ) = ğĚī (Ħ).
Applying this method to the cross-field of Figure 5, we achieve the partitioning

illustrated in Figure 6. An additional illustration of this procedure on a different

domain can be seen in Figure 7.
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Fig. 6 Cross-field of the figure 5 after alignment process (same picture as second one on figure 3)

Fig. 7 Top: unaligned cross-field, middle: rectified cross-field, bottom: mesh quad

2.5 Boundary singularities

It is sometimes mandatory for numerical simulations, to delimit portions of the

domain boundary with physical nodes. This is especially the case when applying

piecewise boundary conditions. When these nodes do not coincide with the geomet-

rical ones (as corners), one way to include this information would be to see them in

the cross-field as singular points of the boundary.

The presence of a boundary singularity should indicate a local rotation of the

cross associated with the outgoing normal. The quantification of this rotation would

thus give the value of the index associated with the singularity. In the literature, the

associations (corner angle - index) proposed tend to minimize the rotation of the

field on the boundary in order to keep the cross-field inside the domain as smooth

as possible. The conventional distribution proposed in the literature corresponds to

the values in table 1 with different tolerances around the given angles (see details in

[19]).
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angle ÿ/4 ÿ 3ÿ/2

index 1/4 0 −1/4

Table 1 Usual distribution of angles of boundary singularities [19].

By applying (5) to a boundary singular point Ę, we get the following formula:

ąĉī (Ę) = 2ÿą (Ę) − ÿ + Ę̂, (15)

where ąĉī (Ę) denotes the effective prescribed angular rotation of the cross-field at

the neighborhood of Ę corresponding to a given index ą (Ę) and Ę̂ is the measure of

the boundary open angle at corner Ę.

We illustrate on figures 8 and 9 impact on resulting meshes for several choices of

arbitrary boundary singularity.

Fig. 8 Top: 3 border singular points of index 1/4 each and 1 internal singular point of index 1/4;

Bottom: 2 singular points of index 1/4 and 1 singular point of index -1/4 and 3 singular points of

index 1/4 inside the domain

Fig. 9 Top: 2 border singular points of index 1/4 each and 2 internal singular point of index 1/4;

Bottom: 3 singular points of index 1/4 and 1 singular point of index 1/4 inside the domain
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3 Non-simply connected domains

In this section, we will further explore the application of the previously developed

alignment method to more complex domains, specifically those containing holes.

The application of this method to complex domains with holes is a crucial step

towards achieving accurate and reliable results in multi-material domain treatment.

Let ¬ be a non-simply connected domain such that ĉ¬ =

Ĥ�⋃
ğ=1

�ğ , where �ğ repre-

sents a simply connected component of the boundary ĉ¬ and Ĥ� is the number of

such simply connected components. By applying formula (11), it is observed that

the constraint on the initial cross-field becomes:

Ěěĝ(ī, ĉ¬) =
Ĥ�∑

ğ=1

Ěěĝ(ī, �ğ) = Ć(¬) −
∑

ę∈ĉ¬

ğĚī (ę), (16)

However, when dealing with non-simply connected domains, this condition is only a

requirement and not a guarantee, as it does not ensure continuity of č (the alignment

angle developed in the previous section) on each boundary segment separated by the

singular points on each �ğ , ğ ∈ {1, Ĥ�}. To address this issue, we impose condition

(11) on each �ğ , ğ ∈ {1, Ĥ�}, leading to the following formula:




Ěěĝ(ī, �0) = 1 −
∑

ę∈�0

ğĚī (ę),

Ěěĝ(ī, �ğ) = 1 +
∑

ę∈�ğ

ğĚī (ę), ∀ ğ ∈ ç1, Ĥ�è.

(17)

where �0 denotes the exterior boundary ¬. According to our experiments, while

it can be easy to construct cross-fields that satisfy formula (16) (for example, by

using formula (2)), generating cross-fields that conform to formula (17) in a simple

and efficient manner proved to be more challenging. As an example, the cross-field

shown in Figure 10 complies with condition (16), but does not with (17).

Therefore, we introduce an angle field ć defined on ¬ which will be used to

correct the annular defect of the field ī on the borders of each connected component.

As outlined in Section 2.4, the ultimate cross field ÿ is represented by:

ÿ = Ď(č)Ď(ć)ī, (18)

where Ď(č) and Ď(ć) are rotation matrices corresponding to the angles č (was

defined in section 2.4) and ć. The computation of č in equation (14) has to be

adjusted as follows:

č̃ = ĉĊ − ĉī − ć. (19)

The angle field ć acts as a correction factor for the angular defects caused by the

presence of holes within the domain. To define it, we evaluate a subsidence vector
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Fig. 10 Non-aligned cross-field

field ℎ, whose angle ĉℎ is 4 times ć. The vector field ℎ is given by the following

equation:




△ℎ = 0,

1

2ÿ

∫

�0

ĉℎ = 4

(
Ěěĝ(ī, �0) − 1 +

∑

ę∈�0

ğĚī (ę)

)
,

1

2ÿ

∫

�ğ

ĉℎ = 4

(
Ěěĝ(ī, �ğ) − 1 −

∑

ę∈�ğ

ğĚī (ę)

)
,

∀ ğ ∈ ç1, Ĥ�è.

(20)

In practice, we might need to modify ℎ to remove possible singular points in ℎ. We

do this by using the formula (2).

The application of the method to the cross-field depicted in Figure 10 results in an

aligned cross-field, as demonstrated in Figure 11. The resulting quadrilateral mesh

can be seen in Figure 12.

Further visual representations of the results can be found in Figure 13.

As previously discussed in the introduction of section 3, we demonstrate an

example of a multi-material geometry in Figure 14. The geometry is composed of a

combination of two half-discs and a square plate with a circular hole. By utilizing

the techniques developed earlier, specifically by addressing singular points on the

boundary and treating domains with holes, we can produce a valid mesh.
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Fig. 11 Aligned cross-field

Fig. 12 Mesh quad on non-simply connected domain

4 Case of non-planar surfaces

In this section, let’s apply the method presented in previous sections to non-planar

surfaces. In particular, the lack of a global reference frame to compute the angles of

the cross-field on non-planar surfaces is addressed. To overcome this challenge, we

propose to utilize the heat method for diffusion as presented in [22]. This method

propagates a given vector at a point accordingly to the heat equation. This allows for

the construction of a global reference frame for the surface, which enables accurate

computation of the angles of the cross-field and alignment with the boundary of the

non-planar surface. More specifically, we construct a vector field Ā on the surface

using equation (21), with homogeneous Neumann boundary conditions. We begin the

resolution by initializing the equation with a vector field that is equal to an arbitrary

vector in the tangent space of an arbitrary point and is set to zero everywhere else

on the surface. By solving this equation over a very short time period, we obtain a

vector field that does not have any singularities. The next step is to generate a frame



Title Suppressed Due to Excessive Length 15

Fig. 13 Mesh of Naca0012 with two different configurations of singular points. The initial cross-

fields were obtained using formula (2) by shifting the position of the internal singular points

(ėğ )ğ∈1,2 involved in the formula with Ěğ = −1, ∀ğ.

Fig. 14 An example with two connected components

at each point of the surface using formula 3.

ĉĀ

ĉĪ
= ∇2Ā, (21)

Figure 15 shows an example of the solution of the equation and figure 16 illustrates

the resulting global frame obtained.

In order to illustrate our method in the context of curved surfaces, we will present

an adaptation of the process explained in section 2.4 on a quarter of a sphere.
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Fig. 15 Vector field obtained by the heat method diffusion [22].

Fig. 16 Global frame.

We begin by defining a cross-field on the surface, using the same approach as

described in section 2.4 and depicted on Figure 5. The outcome is displayed in Figure

17. However, similar to the scenario presented in section 2.4, this cross-field may

not be in sync with the boundary of the domain, leading to domains that are not

four-sided.

To overcome this problem, we adjust the cross-field as described in section 2.4.

The outcome of this adjustment on the example of a quarter of a sphere is illustrated

in Figure 18.
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Fig. 17 Invalid partitioning.

Fig. 18 Rectified cross-field.

Finally, the quadrilateral mesh is obtained by meshing each block with four sides,

and it is shown in Figure 19.

Other examples of the results obtained on various geometries are presented in

Figure 20.
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Fig. 19 Quadrilateral mesh of the quarter-sphere

5 Conclusion

We have presented a method that allows to abstract the construction of the mesh from

the generation of the cross-field. The field of crosses is given by respecting constraints

that we have shown. It is then modified in order to adapt it to the topology of the

domain. The advantage is that we benefit from a different distribution of singular

points, and that we can easily take into account non-planar surface manifolds. We

have also implemented operations to take into account arbitrary indexes of singular

points of boundary and also non simply connected domains. In a future work, we

hope to extend the method to mesh adaptation with respect to the solution of a given

equation.
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Fig. 20 Other examples of quadrilateral meshes on non planar geometries
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1. M. Reberol, Maillages hex-dominants : génération, simulation et évaluation. Ph.D. thesis

(2018)

2. N. Kowalski, F. Ledoux, P. Frey, in 21th Int. Meshing Roundtable (Sandia Natl. Labs., San

Jose, United States, 2012). URL https://hal.sorbonne-universite.fr/hal-01076754

3. D. Bommes, B. Levy, N. Pietroni, E. Puppo, C. Silva, D. Zorin, Computer Graphics Forum 32

(2013). DOI 10.1111/cgf.12014

4. T. Gurung, D. Laney, P. Lindstrom, J. Rossignac, Comput. Graph. Forum 30, 355 (2011). DOI

10.1111/j.1467-8659.2011.01866.x



20 Kokou Dotse, Vincent Mouysset, Sébastien Pernet

5. J.F. Remacle, J. Lambrechts, B. Seny, E. Marchandise, A. Johnen, C. Geuzaine, International

Journal for Numerical Methods in Engineering 89, 1102 (2012). DOI 10.1002/nme.3279

6. R. Schneiders, Engineering with Computers 12, 168 (2005)

7. T.D. Blacker, M.B. Stephenson, International Journal for Numerical Methods in Engineering

32(4), 811 (1991). DOI https://doi.org/10.1002/nme.1620320410

8. M. Staten, R. Kerr, S. Owen, T. Blacker, M. Stupazzini, K. Shimada, International Journal

for Numerical Methods in Engineering - INT J NUMER METHOD ENG 81 (2009). DOI

10.1002/nme.2679

9. D.L. Rigby, (2003)

10. T.K.H. Tam, C.G. Armstrong, Advances in Engineering Software and Workstations 13, 313

(1991)
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