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ABSTRACT 

This paper describes mesh morphing methodology based on explicit interpolation. The method handles large displacements while 

maintaining high mesh quality, has a fast run time, scales linearly with mesh size, and can easily be parallelized to many 

processing units. The method was originally developed to morph multi-block structured CFD meshes. Blocking topology is used 

to establish connectivity between domain boundary surfaces and to guide domain decomposition strategy. Blocking layout also 

defines interpolation direction and drives decisions on interpolation order and smoothness which are important to control the 

mesh quality. The method is combined with several pre-processing concepts to extend it to the morphing of unstructured CFD 

meshes. Shrink-wrap, domain decomposition, and automated blocking are combined to generate a structured background mesh 

used as the backbone of the morphing process. The resulting process efficiently morphs unstructured meshes with large surface 

displacements. Morphing capabilities are illustrated in several turbomachinery and external flow applications. 

Keywords: mesh morphing, computational fluid dynamics, interpolation, background mesh, structured and unstructured 

mesh 

1. INTRODUCTION 

A CFD simulation cycle consists of pre-processing (geometry 

modeling and meshing), flow solution computation, and post-

processing of the results. Traditionally, the most expensive 

part of the cycle is obtaining a converged flow solution. 

Improvements in numerical schemes, and the emergence of 

massively parallel CPU and GPU solvers drastically reduced 

flow solution wall clock time. Today, a well-converged 

solution can be obtained in just a few hours even for 

computationally demanding simulations. At the same time, 

the progress in geometry modeling and meshing has been 

modest. Parallel scalability is limited to a small number of 

processing units. A typical run time to generate an 

unstructured CFD mesh of an aircraft model or a wind 

turbine with a few hundred million elements is at least 

several hours. In many cases, mesh generation is already the 

dominant component in a CFD simulation cycle, with no 

clear solution in sight. As a result, the importance of 

alternative paths grows rapidly, mesh morphing being one of 

the most popular. 

Mesh morphing can be loosely described as a modification of 

the baseline mesh while preserving mesh structure, also 

referred to as connectivity or topology. It should be noted 

that morphing cannot fully replace mesh generation but can 

provide a useful path to CFD mesh if a prototype exists. 

Compared to mesh generation, mesh morphing offers several 

advantages, but has its limits as well. A major advantage is a 

much shorter workflow cycle. A morphing input is a baseline 

mesh, which has built-in know-how of mesh generation. If 

the existing mesh has already been used in a previous CFD 

run, it is reasonable to expect that it has proper surface and 

volume feature resolution (e.g. wake, leading or trailing edge 

resolution), wall-cell spacing (y+ distribution), design-

practice <approved= boundary layer, defeaturing parameters 

applied, etc. These aspects (and much more) are part of a full 

mesh generation workflow and are rarely fully automated. 

They come for <free= in a mesh morphing workflow. Because 

morphing <just= deforms the existing mesh, one can expect a 

much shorter turnaround time. And, since mesh connectivity 

is unchanged, uncertainty associated with differences in 

meshing two similar (but still different) models is eliminated 

3 an important aspect when comparing CFD results in re-

design and optimization applications. However, fixed 

connectivity is also the main constraint since it limits the 

scope of a morphing workflow to similar models with limited 

geometry variations before the deformed mesh becomes 



 

 

unusable. As a result, morphing has seen limited use in small 

amplitude optimization and fluid-structure workflows. 

The success of an industrial morphing system is measured by 

how it addresses the major questions: i) what its useful 

application space is, ii) what displacement types and 

amplitudes it can handle, iii) parallel capabilities, and iv) 

scalability. The history of research on mesh morphing is as 

long as the mesh generation. Early methods targeting mapped 

meshes were succeeded by methods using elastic and spring 

analogy, followed by mesh-based PDE solutions including 

Laplacian and other smoothing methods. Examples of review 

papers on the comparison of various morphing methods can 

be found in [1], and [2]. In recent years, the radial basis 

function approach (RBF) is the method of choice. See [3], 

[4], [5], and [6] among others. RBF represents a meshless 

approach to morphing and offers an interpolation-like 

technique for distributing displacement fields into the 

domain. Much of the recent work on RBF focuses on the 

choice and support of the interpolation functions targeting 

specific application space. For examples see [7], [8], and [9]. 

Most morphing methods, including the popular RBF morph, 

are implicit which assumes solving a large system of 

equations (meshless or not) to compute displacement field 

across a domain. The scalability and run-time are directly 

affected by the size of this system. For the mesh-based 

methods, the size of the system is typically the size of the 

background mesh used to discretize the domain (which may 

or may not be the original CFD mesh). In the case of 

meshless methods, system size is driven by the size of the 

displacement source array. This depends on the nature of the 

application and how the system is set. In some applications, 

like fluid-structure interaction, it is driven by the number of 

surface mesh nodes, and the system size can easily grow into 

tens or hundreds of thousands. In such cases, the performance 

of the implicit methods could be significantly degraded. 

Various approximation techniques have been proposed to 

improve the performance in these cases, and this is still an 

area of active research. 

The other success criterion, arguably more important than 

time performance, is the question of mesh quality. The 

morphed mesh needs to be usable for CFD simulation. This 

statement contains dual requirements. First, mesh quality 

needs to exceed minimum thresholds. Those are usually 

specified in terms of element quality metrics like aspect ratio, 

minimum element angles, or surface and volume ratios. 

However, equally important is the question of preserving 

mesh properties, not necessarily in the form of element 

quality metrics. The baseline (nominal) mesh contains the 

built-in engineering design practice that qualifies it as the 

<golden standard=. Mesh properties like wake resolution, 

local surface refinement, and boundary layer characteristics 

are important features of any CFD mesh and should be 

preserved during the morphing. Remember, morphing serves 

as the alternate for full mesh generation, and full mesh 

generation workflow would most likely account for all design 

changes in deformed configuration, much like in the case of 

the original mesh.  

To date, the question of maintaining the mesh quality during 

morphing has not been fully answered. Certain classes of 

methods are known to produce higher-quality elements than 

others. Other methods are known to be able to better tolerate 

lower initial mesh quality. Even within the same class of 

methods, the choice of underlying shape functions is 

very important, since it significantly influences the 

performance for specific problem categories. The 

requirement of preserving desired mesh properties adds to the 

complexity of implementation. Depending on the morphing 

method, these additions may be hard to implement or may 

result in a reduced smoothness level of the resulting 

displacement field. For example, the requirement of 

preserving the properties of the boundary layer translates into 

additional terms of the system matrix such that locally, the 

stiffness of the region near walls becomes very high. This in 

turn could potentially lead to a less numerically stable system 

and produce lower quality elements than desired. Additional 

requirements like re-positioning the wake region of the airfoil 

mesh in case of airfoil turn or moving the region of mesh 

refinement to keep up with expected shock location change 

due to airfoil redesign are even harder to implement. 

The consequence of the above-mentioned difficulties is 

limited application space of morphing methods, usually 

expressed through small displacement amplitudes, and 

limited practical mesh size in a certain class of applications 

like fluid-structure interaction. In addition, the morphing step 

is usually accompanied by subsequent corrective action 

typically aimed at locally (and sometimes globally) improve 

on mesh quality. Such actions include smoothing, local node 

repositioning, and in some cases other mesh-improving 

techniques like swapping, refinement and coarsening. These 

actions complicate practical implementation and do not 

guarantee that the mesh quality issue will be resolved. 

To address both runtime requirements and be able to better 

control mesh quality during morphing, we propose an explicit 

interpolation-based morphing method. The method was 

originally developed for structured mesh turbomachinery 

CFD applications to enable handling large displacements for 

various applications including airfoil design and re-design, 

optimization, and fluid-structure interaction but also 

applications like geometry feature additions and system 

applications. The method utilizes the structured nature of the 

CFD meshes to automatically determine the optimal domain 

decomposition and the order and direction of interpolation. 

The explicit nature of the method allows for a very fast run 

time and produces an algorithm that scales linearly with mesh 

size. Finally, the explicit method allows for easy control of 

local features like boundary layer properties, region-focused 

mesh control, local element quality check, and local real-time 

adjustments during mesh movement (rather than doing it 

post-factum). 

The remainder of this paper is organized as follows: The next 

section focuses on the morphing environment and the 

interaction of morphing with other pre-processing (geometry 

and meshing) techniques. It is important to understand these 

elements and their interactions since the performance of the 

proposed morphing methodology can be properly understood 

only within the larger framework where several techniques 

come together to form a fully functional system with 

capabilities exceeding the capabilities of each technique 

applied separately. The main section describing the method to 

morph structured CFD meshes then follows. Finally, the 



 

 

extensions of the method to unstructured CFD mesh 

morphing are detailed. The capabilities and usability of the 

proposed method are illustrated in the examples shown 

throughout this paper. 

2. MESH MORPHING ENVIRONMENT 

To fully understand the method described below, it is 

important to learn how it fits within a mesh morphing 

environment and, more generally, how it interacts with 

various modules of a dynamic pre-processing environment.  

2.1 Elements of Morphing Process 

The crucial aspect for the success of any morphing 

application (and a more general pre-processing application) is 

a holistic approach. In the case of a morphing workflow this 

means the inclusion of three fundamental elements: 

• Motion definition  

• Surface mesh morphing 

• Volume mesh morphing 

Morphing workflow buildup starts with the motion definition 

step. In this stage, information on surface and volume motion 

and related constraints should be gathered and organized. The 

result of this stage is a set of rules that describe the motion of 

the domain boundary and internal surfaces, and additionally, 

the motion of regions of special interest. The set of rules 

should describe a conformal, unambiguous, and well-defined 

motion field (particularly at intersection regions). In general, 

motion definition constraints are derived from two sources: 

target application and modeling system/tools environment. 

An example of motion definition for a turbomachinery CFD 

application is illustrated in Figure 1. A domain consists of a 

single passage (slice of a full wheel) around an airfoil. A 

cross-section of the model mesh is shown in the figure. Air 

flows from left (inlet surface) to right (outlet surface). 

Circumferential symmetry employed in the simulation allows 

the model to be reduced to a single airfoil with bottom and 

top periodic surfaces, with 1-1 node and element match. 

Radially, the CFD domain is bounded between the inner 

(hub) and outer (casing) surfaces of the revolution. In 

addition to airfoil shape change, the motion definition set of 

rules should specify how each of the six bounding surfaces 

moves for the CFD simulation intent. For some surfaces, the 

motion could be explicitly specified. For example, in the case 

of a fluid-structure interaction, the motion of the airfoil 

surface mesh is specified in the form of a displacement field 

obtained from a model mechanical analysis. In this case, the 

motion is specified directly on mesh nodes. In a case of an 

airfoil redesign, the surface motion might be specified in the 

form of a new CAD representation while mesh motion needs 

to be computed separately. Some of the surfaces might be 

stationary (hub and casing surfaces), while the associated 

mesh moves (slides) along the surface (slip motion 

condition). The motion of inlet and exit surfaces might 

depend on a wider CFD setup. If there are additional blade 

rows in this simulation forward and aft of this airfoil, the 

axial (horizontal) location of the inlet and exit surfaces 

should be constrained. Depending on the capabilities of the 

CFD solver and the type of simulation, inlet and exit surface 

meshes might be allowed to slide in the circumferential 

direction (top-bottom direction in the figure) or might need to 

be frozen. For the example in Figure 1 inlet mesh (left 

boundary) was allowed to slide and the exit mesh (right side) 

was kept frozen 

              

Figure 1.  Single airfoil passage mesh morphing 

The decision on periodic surface and mesh motion depends 

on solver capabilities, and the type of simulation. In this case, 

the inlet surface mesh slides circumferentially, hence, the 

periodic surface mesh must move as well. At the top and 

bottom, the motion is constrained to the hub and casing 

surface. The motion in the middle of the periodic surface is 

decided based on simulation intent. One should choose to 

move the periodic mesh nodes to mimic airfoil motion 

to maximize the morphed elements’ quality. (Figure 2). 

        

Figure 2.  Periodic surface mesh motion 

Using the above example as a guide it can be observed that 

the set of rules describing target application and motion 

definition are not the same. This is an important distinction 

when considering CFD versus, for example, structural 

analysis. Consider the target application of the airfoil re-

design described above. For an engineer working on airfoil 

optimization, airfoil shape change fully defines the problems. 

The same airfoil shape change is sufficient for a mechanical 

analyst as well since the new airfoil shape fully defines the 

structural model. However, an airfoil is just one of the 

surfaces of the larger CFD domain. As described above, other 

considerations that stem from a larger hardware system (of 

which the airfoil is just one component), the type of the CFD 

simulation, and modeling system capabilities play a role in 

how the CFD domain changes its shape. Hence, while in both 

cases the target application is the airfoil re-design, one ends 

with a significantly different (wider) set of motion rules in 

the case of a CFD workflow.   



 

 

Once the motion definition is complete, the surface mesh 

morphing can commence. Depending on the nature of surface 

motion the computation of new surface mesh could be done 

in a separate step (explicit surface mesh motion) or can be 

performed simultaneously with volume morphing (implicit  

surface mesh motion constraint). For the example shown in 

Figure 1, inlet surface motion could be precomputed by 

prescribing the amount of the circumferential shift or could 

be left to be computed at the time of volume mesh morphing 

as a fallout from the volume mesh morphing interpolation 

scheme with the additional constraint that the axial motion of 

the inlet surface nodes is set to 0. The exact workflow 

depends on the capability of the morphing method used, and 

the existence of additional CFD constraints like the need to 

impose a specified flow angle in the inlet region for a smooth 

transition to the upstream blade row. Note how the motion 

definition (circumferential slide), surface mesh morphing 

(explicit or implicit, constrained, left to be computed during 

volume morph), and volume mesh morph elements of the 

morphing environment merge into a single workflow 

decision which has a direct consequence on the quality of the 

morphed mesh. Also, note the flexibility of the modular 

environment. Depending on the requirements, each of the 

steps can operate in a different mode. For example, we could 

freeze the inlet mesh, or in the case of circumferential slide 

precompute new inlet mesh. The decision on how to operate 

should be derived from motion definition constraints, 

capabilities of the morphing, pre-processing, and simulation 

systems, and projected morphed mesh quality for each of the 

possible workflows. 

Surface mesh displacement (explicitly computed or implicitly 

constrained) serves as a boundary condition for volume mesh 

morph. The role of volume morphing is to distribute surface 

mesh displacements into the domain volume in an <optimal= 
way. The definition of <optimal= depends on several factors 
including the original mesh quality, displacement amplitudes, 

the local and global mesh quality criteria (e.g. boundary layer 

properties), etc. 

When discussing the morphing environment, the emphasis is 

on the modular structure. Both surface mesh and volume 

mesh morphing parts of the environment should contain 

several different morphing modules instead of focusing solely 

on one method. Every modern commercial pre-processing 

package offers several meshing methods. Workflows for 

meshing complex models (manual or automated based on 

feature recognition) break the process into several stages each 

using the right meshing tool for the job. The same approach 

should be taken in mesh morphing. Parts of the model might 

be best morphed using projection, others by parametric 

mapping, while the rest might best be served by interpolation. 

2.2 Preprocessing Environment Interaction 

The discussion now shifts one level up to focus on the 

interaction of the morphing environment with the wider set of 

pre-processing modules. A pre-processing environment can 

be loosely described as a collection of modules/capabilities 

each performing specific geometry or meshing task. The 

morphing environment is the subset of this pre-processing 

module set. Other subsets might include mesh generation 

modules (Delaunay, advancing front, overset, etc.), and 

geometry handling modules, but also capabilities like 

smoothing, domain decomposition, splicing, inflation, 

grafting, etc. In a dynamic environment, a set of such 

modules is pulled together into a workflow serving the target 

application space. 

The previous section illustrated how the interaction between 

morphing modules results in different system performances. 

Similarly, the interaction between a morphing environment 

and the wider pre-processing module set brings a new quality 

to modeling and enables morphing methods to work in their 

sweet zones. For example, this paper discusses the extension 

of the volume morphing method originally developed for the 

morphing of structured meshes. The method is grouped with 

shrink wrap, automated blocking, and domain decomposition 

techniques to extend it to the morphing of unstructured 

meshes. 

The illustration in Figure 3 shows how morphing, and mesh 

inflation can be paired to enable a transformation of a 

standard airfoil mesh shown on the left, to a more complex 

model that contains an airfoil root fillet (right). In this case, 

the combination of inflation and morphing enabled a 

transition between two geometrically topologically different 

models. A qualitatively new, higher fidelity CFD simulation 

is enabled. Workflows like this are referred to as morphing-

enabled systems emphasizing the morphing role (although 

morphing is one of several technologies used to realize the 

application).   

 

Figure 3.  Morphing + inflation workflow 

2.3 Morphing Application Space 

This section concludes with a few examples illustrating the 

CFD mesh morphing application space. The examples shown 

represent a small sample of what morphing can be used for. 

In each example, an emphasis is made on how the morphing 

capability was paired-up with other pre-processing modules 

to realize additional simulation benefits. 

It is worth noting that all the models shown were generated 

using the morphing method described in the next section. 

When discussing morphing application space, the usual 

association is re-design and optimization. Morphing-enabled 

workflow operates in existing capability space and the 

primary benefit is the short simulation cycle time. In a typical 

meshing workflow, time-to-mesh is anywhere from several 

minutes to an hour. Efficient morphing implementation can 

reduce time-to-mesh to just a few seconds. The redesign and 

optimization cycle usually requires hundreds of runs which 

then translates to big computational and design time savings. 

In Figure 4 several examples of airfoil re-designs are shown. 



 

 

In such workflows, morphing is usually paired with the 

underlying geometry (CAD) system used to design the 

component of interest. Knowledge of the CAD system is used 

to understand the best approach to surface mesh morphing. It 

is important to note that this is a morphing-to-target-

geometry application where airfoil displacements are given in 

the form of a new geometry model, as opposed to a point 

cloud model where a displacement field is explicitly specified 

on a point set surrounding model. Note the ability to handle 

large changes in airfoil shapes, one of the features of the 

proposed morphing method. 

         

    Figure 4. Airfoil re-design and optimization 

The example shown in Figure 5 represents the use of 

morphing for so-called cold-to-hot and hot-to-cold shape 

changes. Typical aero design is performed in the so-called 

hot state which, for aircraft engines, might correspond to 

airplane cruise speed. For manufacturing, these shapes need 

to be converted to so-called cold shapes (hot-to-cold 

transformation) and later transformed into shapes that 

represent different operating conditions (partial or 

overspeed). In these workflows, morphing is usually paired 

with mapping/interpolation used to map the displacements 

computed on a coarse structural mechanical model to a much 

finer CFD mesh. The primary benefit of morphing-based 

workflow is the direct coupling of mechanical/thermal with 

aero modeling compared to one-way and reduced order 

implicit information sharing, leading to more accurate 

predictions. 

             

             Figure 5. Hot-cold transformation 

Morphing can also be used to extend the modeling 

capabilities of existing systems. Examples shown in Figures 

3, and 6 show such morphing use. In the example in Figure 6, 

morphing is used to study the secondary flow effects on 

airfoil thermal and aero performance by introducing a so-

called leading edge bulb fillet. The primary benefit of 

morphing-based workflows in these cases is a much shorter 

lead time to modeling new capabilities compared to 

modifying existing design systems to accept new shapes. It 

allows for fast new concept evaluation and down selection. 

Accepted concepts can then be added to production system 

modeling capabilities at a later stage. 

Finally, the example in Figure 7 illustrates the use of 

morphing in a system modeling application. In this case, the 

morphing of a single airfoil passage mesh (like the one 

shown in Figure 1) was paired with domain decomposition 

and splicing to enable the generation of a full-wheel 

turbomachinery mesh to study the effects of airfoil 

resequencing. 

   

Figure 6. Study of secondary flow effects on airfoil 
performance using leading edge bulb fillet  

                

Figure 7. Morphing for CFD system applications 

3. STRUCTURED MESH MORPHING 

In this section, the algorithm to distribute surface mesh 

displacements into the volume of a CFD domain is described. 

The discussion is restricted to structured CFD meshes. 

Structured CFD meshes (also known as body-fitted or 

mapped meshes) consist of one or more blocks. Each block 

has the topology of a cube. Block faces are associated with 

external surfaces of the domain or coincide with a face of 

another block (internal interfaces). Structured meshes do not 

have an explicit element structure. Mesh nodes are accessed 

via a block number and local indices. There is no explicit 

node connectivity data stored in memory since index values 

are sufficient to compute any <element= related values (e.g. 
stiffness matrix). 

Structured meshes are very efficient in discretizing high 

aspect ratio structures like aircraft wings and fuselage, wind 

turbines, leading and trailing edges of airfoils, and other 



 

 

regions where high aspect ratio elements are desirable (e.g. 

clearances). The major drawback is the difficulty associated 

with discretizing complex domains, which limits their 

application space. However, when available, structured CFD 

meshes are preferred and used as the golden standard to 

benchmark solution quality. 

Structured meshes have properties that lend them to rather a 

straight-forward morphing process as well. If one considers 

the domain as a collection of cuboids, the problem of domain 

deformation reduces to deforming each chunk to reasonably 

preserve a cube-like shape. In such a case, we can expect that 

the mesh inside each block will remain valid and conform to 

quality thresholds. The important message is that, instead of 

working at the element or vertex level, the process abstracts 

to the block level. This is a major benefit. Even in the most 

complex structured meshes, the block count rarely goes into 

the hundreds. Figures 8 and 9 illustrate blocking layouts for 

two model types at both ends of the spectrum. The airfoil 

passage mesh shown in Figure 8 contains a very low number 

of blocks, often not more than 10. On the other side of the 

application space is a full aircraft model for which a section 

detail is shown in Figure 9. Such mesh typically consists of 

several hundred blocks and is considered high-end in terms of 

complexity. Even for these models, block count is negligible 

compared to the number of nodes and elements which are in 

millions. Hence, operations performed at the block level are 

computationally insignificant. 

    

Figure 8. Sample block layout: airfoil passage  

       

Figure 9. Sample block layout for aircraft model 

The second important property of structured meshes is the 

alignment with main flow features. When looking at a cross-

section of a structured mesh, one can follow a grid line in the 

boundary layer region that <flows= around the structure (e.g. 
wing), a streamwise grid line direction aligned with the flow, 

and a cross grid line direction flowing from one domain 

boundary to another. These grid lines connect opposite 

surfaces of the domain where the boundary conditions are 

specified in the form of surface displacements. 

The facts observed above can be used in an efficient two-step 

iterative scheme to interpolate boundary displacements into 

the domain. At the start of an iteration, a part of the domain is 

fully morphed. The rest of the domain is still in the baseline 

state and is active in the sense that morphing still needs to be 

performed on it. In the first step, a search is performed on the 

active domain to identify a block chain connecting opposite 

surface boundaries. Once the connecting block chain is 

established, the mesh in this connecting region is morphed 
using interpolation. This completes the iteration, after which 

the additional part of the domain (defined by block chain) has 

been morphed. The iterative process repeats until the domain 

is fully morphed. 

The two-step approach has important distinguishing features. 

First, the connectivity search step operates at the block level 

and naturally lends itself to built-in domain decomposition. 

Due to low block count, even the most complex search and 

optimization algorithms are cheap. One has the freedom to 

collect all valid connectivity paths, and then to use a variety 

of priority-driven decision algorithms to choose which ones 

to tackle first. The priority criteria can vary. <The most 
important region (to be morphed first)= could be defined by 

application workflow. It might be the region where a shock is 

expected to form and maintaining the morphed mesh quality 

is critical. It might also be the wake region where tighter 

mesh resolution must be maintained. The order of morphing 

is important since the boundary constraints accumulate and 

the active domain gets smaller with each added iteration. 

Having the opportunity to decide the morphing order, 

increases the chances of getting valid morphed mesh (for 

example by morphing first the regions with the smallest 

elements or the region with the lowest mesh quality). 

The second aspect in which this approach stands out is its 

explicit interpolation nature. The connectivity search step 

(with associated priority decision) identifies the block chain 

to be morphed. This region has the topology of a cube, with 

opposite sides being surface mesh patches on domain 

surfaces (or the surface of the previously morphed region). A 

set of grid lines (topologically parallel to each other) connect 

these patches. For each connecting grid line, displacements at 

ends are known. To distribute them into the domain, one 

simply interpolates along the grid line using a chosen 

distribution law, the simplest one being linear interpolation 

(by grid line length). Irrespective of the interpolation 

function, (a few choices are discussed at end of this section) 

the computation of the displacement for each internal node is 

explicit and depends only on the displacements of the end 

nodes. There is no system of equations to be solved, there is 

no matrix3vector multiplication involved. Computational cost 

is reduced to a single nodal sweep, with a single displacement 

calculation per node. Thus, the computational cost scales 

linearly with mesh (nodal) count. 

The iterative domain decomposition nature of the process 

allows the addition of steps to the morphing workflow to 

improve robustness and target CFD-specific features.  

First, note that in a typical CFD mesh, elements near surfaces 

have very small thicknesses and high aspect ratios (typically 

in thousands) (Figure 10). This region requires special 

treatment during mesh morphing since thin boundary layer 

elements cannot tolerate distortion. Relative vertex motion 

needs to be kept at a minimum, particularly in the direction 

normal to the wall. In CFD workflows, the boundary layer 

mesh (region 0 in Figure 12) is morphed first. It is morphed 



 

 

in a pointwise-rigid manner: each surface mesh point has an 

associated grid line emanating from the (airfoil) surface. Each 

node on the grid line is assigned the same displacement as the 

corresponding surface node. For most practical applications, 

this procedure generates a boundary layer mesh of the 

same quality as the original by preserving the orthogonality 

and the spacing of the wall. Figure 10 shows details of a 

boundary layer mesh for an airfoil re-design with an airfoil 

section rotated 10 degrees, and a chord shortened by 5%. 

Note how two meshes look almost identical near the airfoil 

surface. 

      

      

      Figure 10. Boundary layer mesh preservation  

The other important requirement is to ensure that boundary 

surface constraints are fully satisfied. For a CFD mesh 

morphing workflow this requirement typically includes 1-1 

periodic surface mesh match and the requirement that bottom 

and top mesh layers lie on prescribed surfaces (hub or inner 

surface, and case or outer surface). To satisfy these 

requirements one can modify the interpolation step described 

above to bi-directional (or tri-directional) interpolation for 

block chains that touch the surfaces in question. However, 

practical implementation typically uses a simpler decoupled 

approach. During the iterative volume morphing stage, 

standard interpolation is performed along grid lines. No 

special consideration is given to the block chains that touch 

the hub or case surfaces. As a result, outer mesh layers may 

not lie on designated surfaces. To rectify this, a post-

interpolation step is added in which surface mesh nodes are 

projected to designated surfaces, and associated grid lines 

(emanating from surface nodes) are appropriately 

stretched/contracted by interpolating the surface node 

displacement on the grid line (much like in the regular 

interpolation step during iterative morphing process). To 

ensure 1-1 periodic match, surface mesh projection should be 

along the radial direction (passing through the axis of 

revolution). 

3.1 Morphing Workflow Example 

The above method is embedded in a workflow to morph a 

structured CFD airfoil passage mesh shown in Figure 12. The 

workflow follows the three-part approach to morphing 

discussed in Section 2. The volume morph algorithm 

described above is the element of part 3 of the workflow. The 

steps of the workflow are shown in Figure 11. 

 

 

 

 

 

 

 

 

 

 

 

3.0

3.1

 

 1. By boundary condition: airfoil walls, periodic bc, inlet bc, exit bc

2. By element quality: skewness (minimum angle)

3. By path aspect ratio: from low to high aspect ratio

3.2. 

1. Search all valid paths in active domain

2. Place paths in priority queue

3. Interpolate surface displacements into the highest path block chain

4. Update active domain, surface mesh displacements on active domain bdry

3.3. 

1. Project surface mesh nodes of first and last layer to hub/case

2. Interpolate: distribute endwall displacements along spanwise grid lines

Finalize:

Boundary layer motion: constant displacement along grid lines off the airfoil

Initiate active boundary to domain outer boundary and boundary layer outer surfa

Initiate active domain to full domain minus boundary layer

Set interpolation law to linear along grid line arc length

Set priority path criteria. Initiate priority path queue

Iterative search and interpolate

While active domain exists

 

     Figure 11. Morphing workflow: Airfoil passage  

The workflow begins with surface motion definition. 

Whenever given a choice, the motion should be chosen to 

allow maximum flexibility during morphing. In this example 

of an airfoil redesign, airfoil deformation is a user input. The 

redesign shown in Figure 12 consists of 10% chord reduction 

at 15% and 90% of the airfoil span and 10% chord extension 

at 50% span. CFD workflow constraints axial (flow 

direction) location of inlet and exit surfaces, and inner and 

outer diameter surfaces (hub and case) do not deform. Other 

than that, external surfaces are allowed to move. To allow for 

maximum flexibility during morphing (and the best chances 

of good mesh quality after morphing), inlet and exit surfaces 

are allowed to slide circumferentially, and periodic surfaces 

are allowed to slide to replicate airfoil motion in the middle 

of the domain. To ensure conformity, periodic movement 

tapers from the value in the mid-domain to match the corner 

motions of inlet and exit surfaces. While hub and case 

surfaces do not deform, the surface mesh is allowed to slide 

along the surfaces. 

In the surface morph part of the workflow motion definition 

is used to compute a morphed surface mesh in cases where 

sufficient information exists or impose constraints on the 

volume morph if that is not the case. For this airfoil redesign, 

2 Surface Morph 

3 Volume Morph 

1 Motion Definition 
Surface Motion description

Airfoil User given

Inlet/Exit Circumferential slide

Midchord: replicate airfoil mid-camber motion

Fwd/Aft: taper to conform to inlet/exit motion

Hub/Case No surface deformation. Slip condition

Periodics

Surface Surface Mesh Morphing Details

Airfoil User Given

Inlet/Exit Constant circumferential motion defined by airfoil LE/TE

Midchord: replicate airfoil mid-camber motion

Fwd/Aft: linear taper to conform to inlet/exit motion

Hub/Case Slip condition. To be enforced during volume morphing stage.

Periodics



 

 

inlet and exit morphed surface meshes are computed using 

angle shifts defined by airfoil leading and trailing edge 

motion. Constant shift angle is applied to grid points on the 

same circumferential grid line. Airfoil surface motion 

morphed inlet and exit surface meshes with the periodic 

motion definition in part 1 of the workflow, provide 

sufficient information to compute morphed periodic surface 

mesh (Figure 2). Hub and case surface meshes are not 

computed at this time. The constraint that these meshes lie on 

respective surfaces needs to be built in the volume morph 

part of the workflow. 

The volume part of the workflow begins with the morphing 

of the boundary layer region (region 0 in Figure 12). For 

every grid line emanating from the airfoil surface, and for 

every node on the grid line, a displacement of the 

corresponding surface node is applied. After completion of 

this step, several initialization steps are performed to allow 

for the iterative part of the workflow to begin. The active 

domain and its boundary are defined (all the domain except 

region 0). Interpolation law is set to linear along grid line 

length. A set of priority rules are defined to facilitate the 

priority sorting of connectivity paths during the search step of 

an iteration. The sets of rules are divided into subgroups, the 

lower group of rules serving as a tiebreaker in case two or 

more equivalent paths exist. The order of the groups and the 

order of boundary condition types are not arbitrary and are 

driven by the application type. At the top of the priority are 

paths that connect parts of the model (for example two airfoil 

surfaces in the case of a multi-airfoil model). The reason: the 

mesh quality near airfoil surfaces (or interfacing with airfoil 

boundary layer) is of the highest importance for the quality of 

a CFD simulation. Similarly, the periodic boundary condition 

is placed in front of the inlet and exit since in most airfoil 

meshes, the skewness of the mesh in the mid-passage (the 

region between the airfoil and periodic surfaces) plays 

important role in accurately resolving flow features like 

vortices and shocks. However, if the flow is expected to be 

subsonic (no shocks), one might prioritize wake mesh quality 

and place the exit surface in front. Similarly, if this 

simulation targets the interaction between blade rows in an 

aircraft engine, and this is the second airfoil in the setup, the 

quality of the inlet mesh region would be important to ensure 

proper flow feature transition to the front of this airfoil. In 

such cases, inlet boundary condition should be prioritized in 

the workflow. (Note the importance of the flexibility of the 

workflow. The one-size-fits-all approach does not apply 

here.)  

With priority rules and a priority queue in place, the iterative 

search-and-interpolate part of the process can begin. During 

the search step of an iteration, a set of paths (block chains) 

connecting the surfaces of the active domain is collected. For 

this example, the paths found in the first iteration are shown 

in the upper left part of Figure 12 (labeled 1a thru 1d). Using 

a priority set of rules, paths labeled as <1= are selected (upper 
right of Figure 12). In the interpolate part of an iteration a 

sweep is performed thru grid lines along direction <1= 
connecting the airfoil boundary layer and the periodic 

surface. For each grid line, displacements of the end nodes 

are known (one end node on periodic surface mesh, the other 

end node on the boundary layer region morphed in step 3.0). 

Using linear interpolation, end node displacements are 

interpolated on the nodes of the grid line. At the conclusion 

of the iteration, the intermediate mesh shown at the bottom 

right of Figure 12 is obtained (labeled as <1=). 

The process continues with iterating on the updated active 

domain (top left of Figure 13), searching and obtaining valid 

paths (labeled 2 and 3), selecting paths labeled 2, and 

interpolating along inlet grid lines to obtain the intermediate 

mesh stage <2= at the end of the second iteration (bottom 
right of Figure 13). In the final iteration, the remaining exit 

region of the mesh gets morphed in a similar way. 

         

    

  

     Figure 12. Morphing process: iteration 1  

          

   

Figure 13. Morphing process: iteration 2  



 

 

After the completion of the search-and-interpolate stage, the 

remaining task is to ensure any surface constraints set in part 

2 of the workflow are satisfied. In this example, surface mesh 

constraints are applied to the bottom and the top layer of 

the mesh such that the final morphed mesh conforms to the 

target domain. Mesh nodes at the bottom layer are projected 

to the hub and nodes at the top layer are projected to the case 

surface. Radial projection (vector passing thru the axis of 

rotation) is used to maintain rotational periodicity. In the final 

step displacements of the end nodes are interpolated on the 

nodes of the grid lines connecting the hub and case surfaces. 

3.2 Method Performance 

The discussion on method performance includes an 

assessment of runtime, scalability, and the ability to handle 

large displacements. 

As previously noted, the bulk of the computational cost lies 

with the interpolation stage of the volume morph which is 

implemented as a single nodal sweep. Hence, it is expected 

that the method scales linearly with the nodal count and that 

the run time is short. The graph in Figure 14 shows the 

runtime performance of the method for the workflow 

example described in the preceding section. For the 

scalability test, the mesh count was varied from 0.1 to 40 

million nodes. Method indeed achieves linear scalability with 

respect to the nodal count. From the same graph, one can see 

that mesh with 25 million nodes morphs in about 2 seconds 

on a single CPU. (The reader should focus on ball-park run-

time performance rather than the value. The exact run time 

will depend on the system hardware, and implementation of 

the workflow). 

The ability to handle large displacements is tied to the key 

feature of the method: the interpolation of surface 

displacements along grid lines connecting domain surfaces. 

The goal is to produce a morphed mesh that satisfies quality 

thresholds. In real-life applications, the quality of a mesh is 

determined using a set of metrics depending on application 

specifics. For this presentation, aspect ratio and element 

determinant are chosen to demonstrate the method’s 
performance. Aspect ratio plays important role in 

characterizing the boundary layer mesh region and is used on 

a relative scale. For reliable CFD the aspect ratio of morphed 

and baseline meshes in this region should be very similar. 

Determinant, on the other hand, is used on the absolute scale: 

all elements should have a determinant larger than the 

threshold value set by the design practice. 

The quality of the mesh should be assessed separately for 

boundary and far-field regions. (CFD mesh has different 

properties, and the morphing method differs in these regions.) 

As described above, the application of constant displacement 

on the nodes of grid lines emanating from boundary wall 

surfaces preserves element shape. Therefore, minimal 

changes are expected during morphing for this mesh region. 

The table in Figure 14 illustrates the performance of the 

method for the airfoil redesign example: aspect ratio and 

determinant in the near-field mesh region are essentially 

unchanged during morphing.   

For the far-field region, during every iteration, end nodal 

displacements are interpolated on all topologically parallel 

grid lines of the block chain that connects domain surfaces. 

      

      

Figure 14.  Method performance: airfoil redesign 

Critical to quality is the level of distortion added to the 

element during interpolation, which in turn is directly related 

to relative displacements of element vertices. Neighboring 

grid lines undergo the same interpolation law on similar arc 

lengths and similar nodal distribution along the grid lines. If 

the displacements of the neighboring end nodes on the 

surfaces of the domain are not drastically different, the 

interpolation process will result in an element distortion level 

that can be tolerated by the original element shape. A good 

quantitative measure to gauge whether a given displacement 

field can be handled by interpolation is the non-dimensional 

relative displacement metric. It is computed at the element 

level as the maximum nodal relative displacement divided by 

the average element length. (Note that this metric is 

directional 3 a separate value is computed for each of the 

three grid directions). The value of 1 would mean that the 

maximum relative displacement of nodes of the element 

equals the element size. This metric depends mainly the on 

the surface displacements slope. The choice of the 

interpolation law does have some influence but to a much 

lesser degree. During morphing, this relative displacement is 

<added= to the pre-existing element distortion of the baseline 

mesh, so the answer on how large displacements the 

morphing can handle depends on the quality of the 

originating mesh as well. Experience in using the proposed 

method shows that fields with maximum nondimensional 

relative displacement metric smaller than 0.25 are handled 

well during morphing, which spans many real-life CFD 

applications like optimization, airfoil flutter, wind turbine 

vibrations, and similar applications illustrated in Section 1 of 

this paper. The table in Figure 14 illustrates the performance 

of the method for the airfoil redesign example: changes to 

both determinant and aspect ratio metrics in the far-field 

mesh region are minimal. 

As hinted above, the choice of interpolation law plays a role 

in the final mesh quality. But more importantly, the choice of 

the interpolation law determines the shape and smoothness of 



 

 

the displacement field in the mesh domain. The simplest 

choice is a linear interpolation (by grid line length). It results 

in the C0 displacement field, with the slope discontinuities 

occurring at the boundaries of the domains defined in 

each iterative step. Higher-order interpolation can be used to 

ensure the desired level of smoothness of the displacement 

field. Figure 15 illustrates a sample grid line in the morphing 

region <1= of the first iterative step of the airfoil redesign 
example. The grid line connects the boundary region (marked 

as <0= with the periodic surface. The straight blue line depicts 

the displacement field distribution along the grid lines <1= (in 
region 1) and <0= (in boundary layer region) when linear 
interpolation is used and with the assumption of frozen (no 

motion) periodic surface. Dashed lines correspond to the 

motion of the respective region on the opposite side of the 

airfoil. The displacement field exhibits slope discontinuities 

at the interface to the boundary layer region and the location 

of the periodic boundary. For some applications, this 

discontinuity may not pose a problem. The morphed mesh 

may have a slightly higher or lower element growth ratio at 

locations of discontinuities, but this change may be within the 

variations already present in the original mesh. However, the 

smoothness of the displacement field might be of importance 

for other applications (e.g. fluid-structure interaction) where 

mesh motion plays a role in a numerical scheme. In such 

cases, a switch to higher-order interpolation might be needed. 

(shown as red curve in Figure 15). 

 

            Figure 15: Interpolation law choice 

4. UNSTRUCTURED MESH MORPHING 

The morphing approach outlined in the previous section has 

several strong points. It robustly handles large mesh motion, 

is very fast, and scales linearly with mesh count. The main 

drawback is that it is limited to structured CFD mesh 

applications. 

This section describes the extension of the above approach to 

morphing unstructured meshes. The goal is to retain the good 

sides of the method but to relax the requirement of structured 

baseline mesh. The main idea for the extension originates 

from the way how the structured mesh gets morphed. Special 

attention was paid to the boundary layer mesh region in the 

vicinity of walls, where relative mesh vertex motion is kept to 

a minimum, and prescribed displacement is diffused into the 

volume only as one moves away from the walls. This idea 

can be extended to unstructured meshes, provided the domain 

can be split into near and far-field regions. 

To realize such a split, two actions need to be performed. A 

boundary between two regions needs to be defined, followed 

by a decomposition step. 

Boundaries between near and far-field mesh regions should 

be defined automatically (any user intervention defeats the 

purpose of fast morphing). The shape of the boundary should 

be simple, not dependent on surface details, but resemble 

global model features to stay reasonably close to the 

structure. This is precisely the same set of criteria used in 

shrink-wrap technology where the idea is to walk over small 

features and retain only the global shape of the structure. For 

mesh split, the emphasis is on simplicity and automation. The 

length of surface offset used during shrink wrap is not of the 

primary concern. In the previous section, we used simple 

airfoil models to showcase the structured morphing approach. 

Imagine now that those airfoil models come with all the 

complexity of real hardware: tip squealers, cooling holes, 

vortex generators, tip shrouds, and part-span shrouds, to 

name a few. Inevitably, such models would need to be 

discretized in an unstructured manner. However, from a 10-

foot distance, the model would still look like an airfoil. One 

can provisionally scan the baseline surface mesh model, 

remove all local features for example section by section), 

compute simplified cross-sections, and <wrap= all exotic 
dimples, undulations, and similar, by offsetting sufficiently 

enough outward. The shrink wrap technology is not new, and 

it is readily available in many commercial meshing packages 

today. Additionally, many structures of interest can be 

shrink-wrapped with very simple actions: airfoil wing and 

fuselage, wind turbines, and turbomachinery blades can all be 

approximated with primitive cylindrical structures. 
Once the wrap surface is defined, domain decomposition can 

be used to separate the originating mesh into near-field 

(elements inside) and far-field (elements outside) regions. 

A simple model of a swinging wrecking ball is used to 

illustrate the steps of the unstructured mesh morphing 

process. The baseline mesh model and prescribed 

displacement field are shown in Figure 16. The model 

consists of a ball hanging on a rope attached to a crane. The 

ball swings toward the crane as shown. Figure 17 illustrates 

the shrink-wrap model around the rope-ball model. Note that 

in a real application, rope and ball could be replaced with, for 

example, an aircraft wing with arbitrary geometry detail 

level. The shrink-wrap model could still be a circular 

cylinder. Mesh decomposition into the near-field region 

around rope (red), on-the-fence (white), and far-field mesh 

regions (light blue) is shown in Figure 18. 

The Mesh morphing process splits into two stages. First, the 

nodes (elements) of the near-field mesh region are moved. 

Like in the case of structured mesh morphing, the goal is to 

preserve the mesh characteristics as much as possible. The 

approach, again, is to distribute surface displacements within 

the near-field region in a pointwise rigid way to minimize 

boundary layer mesh distortion. 

                                                               

        Figure 16. Swinging wrecking ball model  



 

 

     

    Figure 17. Shrink wrap of the ball-crane model  

     

             Figure 18. Mesh decomposition  

Surface displacements are propagated through the prism 

boundary layer in the same way as for structured meshes by 

applying constant motion on the mesh line emanating from 

the surface and going through the thickness of the 

boundary layer. From there, displacements are propagated 

one element layer at a time until all elements of the inner 

mesh region are exhausted. In doing so, the vertices of the 

tetrahedral elements of the previous layer serve as the sources 

to compute the displacements of the vertices of the elements 

in the next layer. Various weighting schemes can be used to 

propagate the displacements in the outward direction, starting 

from simple unweighted averaging, but also considering local 

model curvature, element quality, distance proximity, etc. 

Layer structure and displacement propagation scheme for a 

cross-section of the rope in the ball model and simple airfoil 

model are shown in Figure 19. 
After all vertices of the inner mesh region are assigned the 

displacement value, the morphing of the far field can start. 

Following the logic of the structured mesh morphing process, 

the outer boundary of the inner mesh region takes the role of 

the active region boundary. Unlike the structured mesh case, 

there is no underlying block structure and structured grid 

lines to serve as the interpolation medium. 

 

Figure 19. Layer progression for inner mesh 
displacement distribution 

The shape of the domain boundary is simple (from the shrink 

wrap), and that boundary surface is readily discretized using 

structured surface mesh (see Figure 17 for the example). 

This is where another tool from the pre-processing suite 3 

automated blocking generation 3 is used to generate 

structured background mesh over the far-field mesh region 

with shrink-wrap surface mesh at its boundary. Assuming 

such mesh is generated the following actions can be taken: i) 

Project displacements of the outer layer of the inner mesh 

region onto the shrink-wrap surface, ii) morph the structured 

background mesh to distribute the displacement field into the 

domain, iii) project computed displacement field from 

structured background mesh onto the nodes of the baseline 

unstructured mesh. 

The steps listed above are analyzed in more detail. 

At the heart of the process is the assumption that the 

structured background mesh can be readily generated. Indeed, 

the far-field mesh region has a simple shape (shrink-wrap 

boundary). Automated block generation methods can be used 

to chunk and generate background structured mesh. Such 

processes can be found in commercial packages that operate 

on turbomachinery CFD meshing. More sophisticated 

methods capable of discretizing complex domains are 

described in [10], [11], [12], and [13] among others. Using 

these methods, background structured mesh can be 

automatically generated for the target class of applications 

(airfoil turbomachinery, fuselage-wing, wind turbine, etc.). 

Background meh for the rope-ball model is shown in Figure 

20. Note, that the structured mesh serves only as the 

background medium to compute and distribute the target 

displacement field into the far-field mesh region where the 

elements are typically large (much larger than in the near-

field region 3 see Figures 18 and 19 for examples. These 

elements can tolerate larger relative nodal displacements, 

including numerical <imperfections= that might arise from 

using a coarser background mesh. The message here is that 

the background mesh does not need to be perfect in terms of 

resolution and smoothness. The resolution should be such to 

allow for a sufficiently smooth displacement field but can be 

much coarser than the original unstructured mesh. 

Once the background mesh is available, the next step is to 

compute the displacements on its surface 3 the shrink-wrap 

surface. The shrink-wrap surface is fully covered by the outer 

layer of near-field region elements (white elements in Figure 

18). Simple, element-wise projection can be used to compute 

the displacements for each of the nodes on the shrink-

wrap surface. Note that this step is local (localized to each 

element of the interface), and explicit in nature. 

Displacements for each node on the shrink-wrap surface are 

computed by interpolating the inside mesh element of the 

original mesh that contains it. 

  

        Figure 20. Structured background mesh  



 

 

From there, the structured background mesh gets morphed. 

The method described in the previous section is used. This 

step is the key element in the process since allows for 

explicit, fast, and scalable displacement field computation. 

By switching to structured mesh to compute the displacement 

field, the time-consuming connectivity-related issues of 

unstructured meshes are bypassed, presented in the form of 

expensive implicit schemes for displacement computation. 

Finally, the displacement field computed on the nodes of the 

structured meshes needs to be projected to the nodes of the 

original unstructured mesh. Like in the forward projection 

step done above, this process is also local and explicit in 

nature 3 no system of equations involved, just pure 

elementwise interpolation. 

    

       

            Figure 21. Near-field mesh morphing   

                 

 Figure 22. Displacement of the shrink-wrap mesh  

Figures 21, 22, and 23 illustrate the steps outlined above for 

our swinging ball model. Figure 21 shows a comparison of 

the baseline and morphed meshes for a few cross-sections of 

the inner mesh region. The displacement of the shrink-wrap 

surface is shown in Figure 22, and the motion of the 

background mesh is shown in Figure 23. Finally, mesh 

motion for the far-field (outer) mesh region for a cross-

section of the rope-ball model is shown in Figure 

24.

 

Figure 23. Motion of the background mesh 

             

             

Figure 24. Baseline and morphed mesh comparison 

5. CONCLUDING REMARKS 

This presentation on mesh morphing has two goals. The first 

half of this paper discusses the elements of the mesh 

morphing environment, and the interaction of the morphing 

system with a wider set of pre-processing techniques. Mesh 

morphing can reach its full potential only when approached 

holistically. Several examples are shown demonstrating how 

such interactions lead to qualitatively new simulation 

capabilities. 

In the second part, the focus is narrowed to volume mesh 

morphing. An explicit interpolation-based approach to the 

morphing of structured meshes is proposed. The method 

handles large displacements, has a fast run time, and scales 

linearly with mesh count. The proposed method is then 

extended to the morphing of unstructured meshes by 

combining it with several pre-processing techniques, 

demonstrating the benefit of the system-level approach. 
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