

EXPLICIT INTERPOLATION-BASED CFD MESH MORPHING
 Ivan Malcevic1, Arash Mousavi2

1General Electric - Research Center, Niskayuna NY., U.S.A. malcevic@ge.com
2General Electric - Aerospace, Evendale, OH., U.S.A. arash.mousavi@ge.com

ABSTRACT

This paper describes mesh morphing methodology based on explicit interpolation. The method handles large displacements while

maintaining high mesh quality, has a fast run time, scales linearly with mesh size, and can easily be parallelized to many

processing units. The method was originally developed to morph multi-block structured CFD meshes. Blocking topology is used

to establish connectivity between domain boundary surfaces and to guide domain decomposition strategy. Blocking layout also

defines interpolation direction and drives decisions on interpolation order and smoothness which are important to control the

mesh quality. The method is combined with several pre-processing concepts to extend it to the morphing of unstructured CFD

meshes. Shrink-wrap, domain decomposition, and automated blocking are combined to generate a structured background mesh

used as the backbone of the morphing process. The resulting process efficiently morphs unstructured meshes with large surface

displacements. Morphing capabilities are illustrated in several turbomachinery and external flow applications.

Keywords: mesh morphing, computational fluid dynamics, interpolation, background mesh, structured and unstructured

mesh

1. INTRODUCTION

A CFD simulation cycle consists of pre-processing (geometry

modeling and meshing), flow solution computation, and post-

processing of the results. Traditionally, the most expensive

part of the cycle is obtaining a converged flow solution.

Improvements in numerical schemes, and the emergence of

massively parallel CPU and GPU solvers drastically reduced

flow solution wall clock time. Today, a well-converged

solution can be obtained in just a few hours even for

computationally demanding simulations. At the same time,

the progress in geometry modeling and meshing has been

modest. Parallel scalability is limited to a small number of

processing units. A typical run time to generate an

unstructured CFD mesh of an aircraft model or a wind

turbine with a few hundred million elements is at least

several hours. In many cases, mesh generation is already the

dominant component in a CFD simulation cycle, with no

clear solution in sight. As a result, the importance of

alternative paths grows rapidly, mesh morphing being one of

the most popular.

Mesh morphing can be loosely described as a modification of

the baseline mesh while preserving mesh structure, also

referred to as connectivity or topology. It should be noted

that morphing cannot fully replace mesh generation but can

provide a useful path to CFD mesh if a prototype exists.

Compared to mesh generation, mesh morphing offers several

advantages, but has its limits as well. A major advantage is a

much shorter workflow cycle. A morphing input is a baseline

mesh, which has built-in know-how of mesh generation. If

the existing mesh has already been used in a previous CFD

run, it is reasonable to expect that it has proper surface and

volume feature resolution (e.g. wake, leading or trailing edge

resolution), wall-cell spacing (y+ distribution), design-

practice <approved= boundary layer, defeaturing parameters

applied, etc. These aspects (and much more) are part of a full

mesh generation workflow and are rarely fully automated.

They come for <free= in a mesh morphing workflow. Because

morphing <just= deforms the existing mesh, one can expect a

much shorter turnaround time. And, since mesh connectivity

is unchanged, uncertainty associated with differences in

meshing two similar (but still different) models is eliminated

3 an important aspect when comparing CFD results in re-

design and optimization applications. However, fixed

connectivity is also the main constraint since it limits the

scope of a morphing workflow to similar models with limited

geometry variations before the deformed mesh becomes

unusable. As a result, morphing has seen limited use in small

amplitude optimization and fluid-structure workflows.

The success of an industrial morphing system is measured by

how it addresses the major questions: i) what its useful

application space is, ii) what displacement types and

amplitudes it can handle, iii) parallel capabilities, and iv)

scalability. The history of research on mesh morphing is as

long as the mesh generation. Early methods targeting mapped

meshes were succeeded by methods using elastic and spring

analogy, followed by mesh-based PDE solutions including

Laplacian and other smoothing methods. Examples of review

papers on the comparison of various morphing methods can

be found in [1], and [2]. In recent years, the radial basis

function approach (RBF) is the method of choice. See [3],

[4], [5], and [6] among others. RBF represents a meshless

approach to morphing and offers an interpolation-like

technique for distributing displacement fields into the

domain. Much of the recent work on RBF focuses on the

choice and support of the interpolation functions targeting

specific application space. For examples see [7], [8], and [9].

Most morphing methods, including the popular RBF morph,

are implicit which assumes solving a large system of

equations (meshless or not) to compute displacement field

across a domain. The scalability and run-time are directly

affected by the size of this system. For the mesh-based

methods, the size of the system is typically the size of the

background mesh used to discretize the domain (which may

or may not be the original CFD mesh). In the case of

meshless methods, system size is driven by the size of the

displacement source array. This depends on the nature of the

application and how the system is set. In some applications,

like fluid-structure interaction, it is driven by the number of

surface mesh nodes, and the system size can easily grow into

tens or hundreds of thousands. In such cases, the performance

of the implicit methods could be significantly degraded.

Various approximation techniques have been proposed to

improve the performance in these cases, and this is still an

area of active research.

The other success criterion, arguably more important than

time performance, is the question of mesh quality. The

morphed mesh needs to be usable for CFD simulation. This

statement contains dual requirements. First, mesh quality

needs to exceed minimum thresholds. Those are usually

specified in terms of element quality metrics like aspect ratio,

minimum element angles, or surface and volume ratios.

However, equally important is the question of preserving

mesh properties, not necessarily in the form of element

quality metrics. The baseline (nominal) mesh contains the

built-in engineering design practice that qualifies it as the

<golden standard=. Mesh properties like wake resolution,

local surface refinement, and boundary layer characteristics

are important features of any CFD mesh and should be

preserved during the morphing. Remember, morphing serves

as the alternate for full mesh generation, and full mesh

generation workflow would most likely account for all design

changes in deformed configuration, much like in the case of

the original mesh.

To date, the question of maintaining the mesh quality during

morphing has not been fully answered. Certain classes of

methods are known to produce higher-quality elements than

others. Other methods are known to be able to better tolerate

lower initial mesh quality. Even within the same class of

methods, the choice of underlying shape functions is

very important, since it significantly influences the

performance for specific problem categories. The

requirement of preserving desired mesh properties adds to the

complexity of implementation. Depending on the morphing

method, these additions may be hard to implement or may

result in a reduced smoothness level of the resulting

displacement field. For example, the requirement of

preserving the properties of the boundary layer translates into

additional terms of the system matrix such that locally, the

stiffness of the region near walls becomes very high. This in

turn could potentially lead to a less numerically stable system

and produce lower quality elements than desired. Additional

requirements like re-positioning the wake region of the airfoil

mesh in case of airfoil turn or moving the region of mesh

refinement to keep up with expected shock location change

due to airfoil redesign are even harder to implement.

The consequence of the above-mentioned difficulties is

limited application space of morphing methods, usually

expressed through small displacement amplitudes, and

limited practical mesh size in a certain class of applications

like fluid-structure interaction. In addition, the morphing step

is usually accompanied by subsequent corrective action

typically aimed at locally (and sometimes globally) improve

on mesh quality. Such actions include smoothing, local node

repositioning, and in some cases other mesh-improving

techniques like swapping, refinement and coarsening. These

actions complicate practical implementation and do not

guarantee that the mesh quality issue will be resolved.

To address both runtime requirements and be able to better

control mesh quality during morphing, we propose an explicit

interpolation-based morphing method. The method was

originally developed for structured mesh turbomachinery

CFD applications to enable handling large displacements for

various applications including airfoil design and re-design,

optimization, and fluid-structure interaction but also

applications like geometry feature additions and system

applications. The method utilizes the structured nature of the

CFD meshes to automatically determine the optimal domain

decomposition and the order and direction of interpolation.

The explicit nature of the method allows for a very fast run

time and produces an algorithm that scales linearly with mesh

size. Finally, the explicit method allows for easy control of

local features like boundary layer properties, region-focused

mesh control, local element quality check, and local real-time

adjustments during mesh movement (rather than doing it

post-factum).

The remainder of this paper is organized as follows: The next

section focuses on the morphing environment and the

interaction of morphing with other pre-processing (geometry

and meshing) techniques. It is important to understand these

elements and their interactions since the performance of the

proposed morphing methodology can be properly understood

only within the larger framework where several techniques

come together to form a fully functional system with

capabilities exceeding the capabilities of each technique

applied separately. The main section describing the method to

morph structured CFD meshes then follows. Finally, the

extensions of the method to unstructured CFD mesh

morphing are detailed. The capabilities and usability of the

proposed method are illustrated in the examples shown

throughout this paper.

2. MESH MORPHING ENVIRONMENT

To fully understand the method described below, it is

important to learn how it fits within a mesh morphing

environment and, more generally, how it interacts with

various modules of a dynamic pre-processing environment.

2.1 Elements of Morphing Process

The crucial aspect for the success of any morphing

application (and a more general pre-processing application) is

a holistic approach. In the case of a morphing workflow this

means the inclusion of three fundamental elements:

• Motion definition

• Surface mesh morphing

• Volume mesh morphing

Morphing workflow buildup starts with the motion definition

step. In this stage, information on surface and volume motion

and related constraints should be gathered and organized. The

result of this stage is a set of rules that describe the motion of

the domain boundary and internal surfaces, and additionally,

the motion of regions of special interest. The set of rules

should describe a conformal, unambiguous, and well-defined

motion field (particularly at intersection regions). In general,

motion definition constraints are derived from two sources:

target application and modeling system/tools environment.

An example of motion definition for a turbomachinery CFD

application is illustrated in Figure 1. A domain consists of a

single passage (slice of a full wheel) around an airfoil. A

cross-section of the model mesh is shown in the figure. Air

flows from left (inlet surface) to right (outlet surface).

Circumferential symmetry employed in the simulation allows

the model to be reduced to a single airfoil with bottom and

top periodic surfaces, with 1-1 node and element match.

Radially, the CFD domain is bounded between the inner

(hub) and outer (casing) surfaces of the revolution. In

addition to airfoil shape change, the motion definition set of

rules should specify how each of the six bounding surfaces

moves for the CFD simulation intent. For some surfaces, the

motion could be explicitly specified. For example, in the case

of a fluid-structure interaction, the motion of the airfoil

surface mesh is specified in the form of a displacement field

obtained from a model mechanical analysis. In this case, the

motion is specified directly on mesh nodes. In a case of an

airfoil redesign, the surface motion might be specified in the

form of a new CAD representation while mesh motion needs

to be computed separately. Some of the surfaces might be

stationary (hub and casing surfaces), while the associated

mesh moves (slides) along the surface (slip motion

condition). The motion of inlet and exit surfaces might

depend on a wider CFD setup. If there are additional blade

rows in this simulation forward and aft of this airfoil, the

axial (horizontal) location of the inlet and exit surfaces

should be constrained. Depending on the capabilities of the

CFD solver and the type of simulation, inlet and exit surface

meshes might be allowed to slide in the circumferential

direction (top-bottom direction in the figure) or might need to

be frozen. For the example in Figure 1 inlet mesh (left

boundary) was allowed to slide and the exit mesh (right side)

was kept frozen

Figure 1. Single airfoil passage mesh morphing

The decision on periodic surface and mesh motion depends

on solver capabilities, and the type of simulation. In this case,

the inlet surface mesh slides circumferentially, hence, the

periodic surface mesh must move as well. At the top and

bottom, the motion is constrained to the hub and casing

surface. The motion in the middle of the periodic surface is

decided based on simulation intent. One should choose to

move the periodic mesh nodes to mimic airfoil motion

to maximize the morphed elements’ quality. (Figure 2).

Figure 2. Periodic surface mesh motion

Using the above example as a guide it can be observed that

the set of rules describing target application and motion

definition are not the same. This is an important distinction

when considering CFD versus, for example, structural

analysis. Consider the target application of the airfoil re-

design described above. For an engineer working on airfoil

optimization, airfoil shape change fully defines the problems.

The same airfoil shape change is sufficient for a mechanical

analyst as well since the new airfoil shape fully defines the

structural model. However, an airfoil is just one of the

surfaces of the larger CFD domain. As described above, other

considerations that stem from a larger hardware system (of

which the airfoil is just one component), the type of the CFD

simulation, and modeling system capabilities play a role in

how the CFD domain changes its shape. Hence, while in both

cases the target application is the airfoil re-design, one ends

with a significantly different (wider) set of motion rules in

the case of a CFD workflow.

Once the motion definition is complete, the surface mesh

morphing can commence. Depending on the nature of surface

motion the computation of new surface mesh could be done

in a separate step (explicit surface mesh motion) or can be

performed simultaneously with volume morphing (implicit

surface mesh motion constraint). For the example shown in

Figure 1, inlet surface motion could be precomputed by

prescribing the amount of the circumferential shift or could

be left to be computed at the time of volume mesh morphing

as a fallout from the volume mesh morphing interpolation

scheme with the additional constraint that the axial motion of

the inlet surface nodes is set to 0. The exact workflow

depends on the capability of the morphing method used, and

the existence of additional CFD constraints like the need to

impose a specified flow angle in the inlet region for a smooth

transition to the upstream blade row. Note how the motion

definition (circumferential slide), surface mesh morphing

(explicit or implicit, constrained, left to be computed during

volume morph), and volume mesh morph elements of the

morphing environment merge into a single workflow

decision which has a direct consequence on the quality of the

morphed mesh. Also, note the flexibility of the modular

environment. Depending on the requirements, each of the

steps can operate in a different mode. For example, we could

freeze the inlet mesh, or in the case of circumferential slide

precompute new inlet mesh. The decision on how to operate

should be derived from motion definition constraints,

capabilities of the morphing, pre-processing, and simulation

systems, and projected morphed mesh quality for each of the

possible workflows.

Surface mesh displacement (explicitly computed or implicitly

constrained) serves as a boundary condition for volume mesh

morph. The role of volume morphing is to distribute surface

mesh displacements into the domain volume in an <optimal=
way. The definition of <optimal= depends on several factors
including the original mesh quality, displacement amplitudes,

the local and global mesh quality criteria (e.g. boundary layer

properties), etc.

When discussing the morphing environment, the emphasis is

on the modular structure. Both surface mesh and volume

mesh morphing parts of the environment should contain

several different morphing modules instead of focusing solely

on one method. Every modern commercial pre-processing

package offers several meshing methods. Workflows for

meshing complex models (manual or automated based on

feature recognition) break the process into several stages each

using the right meshing tool for the job. The same approach

should be taken in mesh morphing. Parts of the model might

be best morphed using projection, others by parametric

mapping, while the rest might best be served by interpolation.

2.2 Preprocessing Environment Interaction

The discussion now shifts one level up to focus on the

interaction of the morphing environment with the wider set of

pre-processing modules. A pre-processing environment can

be loosely described as a collection of modules/capabilities

each performing specific geometry or meshing task. The

morphing environment is the subset of this pre-processing

module set. Other subsets might include mesh generation

modules (Delaunay, advancing front, overset, etc.), and

geometry handling modules, but also capabilities like

smoothing, domain decomposition, splicing, inflation,

grafting, etc. In a dynamic environment, a set of such

modules is pulled together into a workflow serving the target

application space.

The previous section illustrated how the interaction between

morphing modules results in different system performances.

Similarly, the interaction between a morphing environment

and the wider pre-processing module set brings a new quality

to modeling and enables morphing methods to work in their

sweet zones. For example, this paper discusses the extension

of the volume morphing method originally developed for the

morphing of structured meshes. The method is grouped with

shrink wrap, automated blocking, and domain decomposition

techniques to extend it to the morphing of unstructured

meshes.

The illustration in Figure 3 shows how morphing, and mesh

inflation can be paired to enable a transformation of a

standard airfoil mesh shown on the left, to a more complex

model that contains an airfoil root fillet (right). In this case,

the combination of inflation and morphing enabled a

transition between two geometrically topologically different

models. A qualitatively new, higher fidelity CFD simulation

is enabled. Workflows like this are referred to as morphing-

enabled systems emphasizing the morphing role (although

morphing is one of several technologies used to realize the

application).

Figure 3. Morphing + inflation workflow

2.3 Morphing Application Space

This section concludes with a few examples illustrating the

CFD mesh morphing application space. The examples shown

represent a small sample of what morphing can be used for.

In each example, an emphasis is made on how the morphing

capability was paired-up with other pre-processing modules

to realize additional simulation benefits.

It is worth noting that all the models shown were generated

using the morphing method described in the next section.

When discussing morphing application space, the usual

association is re-design and optimization. Morphing-enabled

workflow operates in existing capability space and the

primary benefit is the short simulation cycle time. In a typical

meshing workflow, time-to-mesh is anywhere from several

minutes to an hour. Efficient morphing implementation can

reduce time-to-mesh to just a few seconds. The redesign and

optimization cycle usually requires hundreds of runs which

then translates to big computational and design time savings.

In Figure 4 several examples of airfoil re-designs are shown.

In such workflows, morphing is usually paired with the

underlying geometry (CAD) system used to design the

component of interest. Knowledge of the CAD system is used

to understand the best approach to surface mesh morphing. It

is important to note that this is a morphing-to-target-

geometry application where airfoil displacements are given in

the form of a new geometry model, as opposed to a point

cloud model where a displacement field is explicitly specified

on a point set surrounding model. Note the ability to handle

large changes in airfoil shapes, one of the features of the

proposed morphing method.

 Figure 4. Airfoil re-design and optimization

The example shown in Figure 5 represents the use of

morphing for so-called cold-to-hot and hot-to-cold shape

changes. Typical aero design is performed in the so-called

hot state which, for aircraft engines, might correspond to

airplane cruise speed. For manufacturing, these shapes need

to be converted to so-called cold shapes (hot-to-cold

transformation) and later transformed into shapes that

represent different operating conditions (partial or

overspeed). In these workflows, morphing is usually paired

with mapping/interpolation used to map the displacements

computed on a coarse structural mechanical model to a much

finer CFD mesh. The primary benefit of morphing-based

workflow is the direct coupling of mechanical/thermal with

aero modeling compared to one-way and reduced order

implicit information sharing, leading to more accurate

predictions.

 Figure 5. Hot-cold transformation

Morphing can also be used to extend the modeling

capabilities of existing systems. Examples shown in Figures

3, and 6 show such morphing use. In the example in Figure 6,

morphing is used to study the secondary flow effects on

airfoil thermal and aero performance by introducing a so-

called leading edge bulb fillet. The primary benefit of

morphing-based workflows in these cases is a much shorter

lead time to modeling new capabilities compared to

modifying existing design systems to accept new shapes. It

allows for fast new concept evaluation and down selection.

Accepted concepts can then be added to production system

modeling capabilities at a later stage.

Finally, the example in Figure 7 illustrates the use of

morphing in a system modeling application. In this case, the

morphing of a single airfoil passage mesh (like the one

shown in Figure 1) was paired with domain decomposition

and splicing to enable the generation of a full-wheel

turbomachinery mesh to study the effects of airfoil

resequencing.

Figure 6. Study of secondary flow effects on airfoil
performance using leading edge bulb fillet

Figure 7. Morphing for CFD system applications

3. STRUCTURED MESH MORPHING

In this section, the algorithm to distribute surface mesh

displacements into the volume of a CFD domain is described.

The discussion is restricted to structured CFD meshes.

Structured CFD meshes (also known as body-fitted or

mapped meshes) consist of one or more blocks. Each block

has the topology of a cube. Block faces are associated with

external surfaces of the domain or coincide with a face of

another block (internal interfaces). Structured meshes do not

have an explicit element structure. Mesh nodes are accessed

via a block number and local indices. There is no explicit

node connectivity data stored in memory since index values

are sufficient to compute any <element= related values (e.g.
stiffness matrix).

Structured meshes are very efficient in discretizing high

aspect ratio structures like aircraft wings and fuselage, wind

turbines, leading and trailing edges of airfoils, and other

regions where high aspect ratio elements are desirable (e.g.

clearances). The major drawback is the difficulty associated

with discretizing complex domains, which limits their

application space. However, when available, structured CFD

meshes are preferred and used as the golden standard to

benchmark solution quality.

Structured meshes have properties that lend them to rather a

straight-forward morphing process as well. If one considers

the domain as a collection of cuboids, the problem of domain

deformation reduces to deforming each chunk to reasonably

preserve a cube-like shape. In such a case, we can expect that

the mesh inside each block will remain valid and conform to

quality thresholds. The important message is that, instead of

working at the element or vertex level, the process abstracts

to the block level. This is a major benefit. Even in the most

complex structured meshes, the block count rarely goes into

the hundreds. Figures 8 and 9 illustrate blocking layouts for

two model types at both ends of the spectrum. The airfoil

passage mesh shown in Figure 8 contains a very low number

of blocks, often not more than 10. On the other side of the

application space is a full aircraft model for which a section

detail is shown in Figure 9. Such mesh typically consists of

several hundred blocks and is considered high-end in terms of

complexity. Even for these models, block count is negligible

compared to the number of nodes and elements which are in

millions. Hence, operations performed at the block level are

computationally insignificant.

Figure 8. Sample block layout: airfoil passage

Figure 9. Sample block layout for aircraft model

The second important property of structured meshes is the

alignment with main flow features. When looking at a cross-

section of a structured mesh, one can follow a grid line in the

boundary layer region that <flows= around the structure (e.g.
wing), a streamwise grid line direction aligned with the flow,

and a cross grid line direction flowing from one domain

boundary to another. These grid lines connect opposite

surfaces of the domain where the boundary conditions are

specified in the form of surface displacements.

The facts observed above can be used in an efficient two-step

iterative scheme to interpolate boundary displacements into

the domain. At the start of an iteration, a part of the domain is

fully morphed. The rest of the domain is still in the baseline

state and is active in the sense that morphing still needs to be

performed on it. In the first step, a search is performed on the

active domain to identify a block chain connecting opposite

surface boundaries. Once the connecting block chain is

established, the mesh in this connecting region is morphed
using interpolation. This completes the iteration, after which

the additional part of the domain (defined by block chain) has

been morphed. The iterative process repeats until the domain

is fully morphed.

The two-step approach has important distinguishing features.

First, the connectivity search step operates at the block level

and naturally lends itself to built-in domain decomposition.

Due to low block count, even the most complex search and

optimization algorithms are cheap. One has the freedom to

collect all valid connectivity paths, and then to use a variety

of priority-driven decision algorithms to choose which ones

to tackle first. The priority criteria can vary. <The most
important region (to be morphed first)= could be defined by

application workflow. It might be the region where a shock is

expected to form and maintaining the morphed mesh quality

is critical. It might also be the wake region where tighter

mesh resolution must be maintained. The order of morphing

is important since the boundary constraints accumulate and

the active domain gets smaller with each added iteration.

Having the opportunity to decide the morphing order,

increases the chances of getting valid morphed mesh (for

example by morphing first the regions with the smallest

elements or the region with the lowest mesh quality).

The second aspect in which this approach stands out is its

explicit interpolation nature. The connectivity search step

(with associated priority decision) identifies the block chain

to be morphed. This region has the topology of a cube, with

opposite sides being surface mesh patches on domain

surfaces (or the surface of the previously morphed region). A

set of grid lines (topologically parallel to each other) connect

these patches. For each connecting grid line, displacements at

ends are known. To distribute them into the domain, one

simply interpolates along the grid line using a chosen

distribution law, the simplest one being linear interpolation

(by grid line length). Irrespective of the interpolation

function, (a few choices are discussed at end of this section)

the computation of the displacement for each internal node is

explicit and depends only on the displacements of the end

nodes. There is no system of equations to be solved, there is

no matrix3vector multiplication involved. Computational cost

is reduced to a single nodal sweep, with a single displacement

calculation per node. Thus, the computational cost scales

linearly with mesh (nodal) count.

The iterative domain decomposition nature of the process

allows the addition of steps to the morphing workflow to

improve robustness and target CFD-specific features.

First, note that in a typical CFD mesh, elements near surfaces

have very small thicknesses and high aspect ratios (typically

in thousands) (Figure 10). This region requires special

treatment during mesh morphing since thin boundary layer

elements cannot tolerate distortion. Relative vertex motion

needs to be kept at a minimum, particularly in the direction

normal to the wall. In CFD workflows, the boundary layer

mesh (region 0 in Figure 12) is morphed first. It is morphed

in a pointwise-rigid manner: each surface mesh point has an

associated grid line emanating from the (airfoil) surface. Each

node on the grid line is assigned the same displacement as the

corresponding surface node. For most practical applications,

this procedure generates a boundary layer mesh of the

same quality as the original by preserving the orthogonality

and the spacing of the wall. Figure 10 shows details of a

boundary layer mesh for an airfoil re-design with an airfoil

section rotated 10 degrees, and a chord shortened by 5%.

Note how two meshes look almost identical near the airfoil

surface.

 Figure 10. Boundary layer mesh preservation

The other important requirement is to ensure that boundary

surface constraints are fully satisfied. For a CFD mesh

morphing workflow this requirement typically includes 1-1

periodic surface mesh match and the requirement that bottom

and top mesh layers lie on prescribed surfaces (hub or inner

surface, and case or outer surface). To satisfy these

requirements one can modify the interpolation step described

above to bi-directional (or tri-directional) interpolation for

block chains that touch the surfaces in question. However,

practical implementation typically uses a simpler decoupled

approach. During the iterative volume morphing stage,

standard interpolation is performed along grid lines. No

special consideration is given to the block chains that touch

the hub or case surfaces. As a result, outer mesh layers may

not lie on designated surfaces. To rectify this, a post-

interpolation step is added in which surface mesh nodes are

projected to designated surfaces, and associated grid lines

(emanating from surface nodes) are appropriately

stretched/contracted by interpolating the surface node

displacement on the grid line (much like in the regular

interpolation step during iterative morphing process). To

ensure 1-1 periodic match, surface mesh projection should be

along the radial direction (passing through the axis of

revolution).

3.1 Morphing Workflow Example

The above method is embedded in a workflow to morph a

structured CFD airfoil passage mesh shown in Figure 12. The

workflow follows the three-part approach to morphing

discussed in Section 2. The volume morph algorithm

described above is the element of part 3 of the workflow. The

steps of the workflow are shown in Figure 11.

3.0

3.1

 1. By boundary condition: airfoil walls, periodic bc, inlet bc, exit bc

2. By element quality: skewness (minimum angle)

3. By path aspect ratio: from low to high aspect ratio

3.2.

1. Search all valid paths in active domain

2. Place paths in priority queue

3. Interpolate surface displacements into the highest path block chain

4. Update active domain, surface mesh displacements on active domain bdry

3.3.

1. Project surface mesh nodes of first and last layer to hub/case

2. Interpolate: distribute endwall displacements along spanwise grid lines

Finalize:

Boundary layer motion: constant displacement along grid lines off the airfoil

Initiate active boundary to domain outer boundary and boundary layer outer surfa

Initiate active domain to full domain minus boundary layer

Set interpolation law to linear along grid line arc length

Set priority path criteria. Initiate priority path queue

Iterative search and interpolate

While active domain exists

 Figure 11. Morphing workflow: Airfoil passage

The workflow begins with surface motion definition.

Whenever given a choice, the motion should be chosen to

allow maximum flexibility during morphing. In this example

of an airfoil redesign, airfoil deformation is a user input. The

redesign shown in Figure 12 consists of 10% chord reduction

at 15% and 90% of the airfoil span and 10% chord extension

at 50% span. CFD workflow constraints axial (flow

direction) location of inlet and exit surfaces, and inner and

outer diameter surfaces (hub and case) do not deform. Other

than that, external surfaces are allowed to move. To allow for

maximum flexibility during morphing (and the best chances

of good mesh quality after morphing), inlet and exit surfaces

are allowed to slide circumferentially, and periodic surfaces

are allowed to slide to replicate airfoil motion in the middle

of the domain. To ensure conformity, periodic movement

tapers from the value in the mid-domain to match the corner

motions of inlet and exit surfaces. While hub and case

surfaces do not deform, the surface mesh is allowed to slide

along the surfaces.

In the surface morph part of the workflow motion definition

is used to compute a morphed surface mesh in cases where

sufficient information exists or impose constraints on the

volume morph if that is not the case. For this airfoil redesign,

2 Surface Morph

3 Volume Morph

1 Motion Definition
Surface Motion description

Airfoil User given

Inlet/Exit Circumferential slide

Midchord: replicate airfoil mid-camber motion

Fwd/Aft: taper to conform to inlet/exit motion

Hub/Case No surface deformation. Slip condition

Periodics

Surface Surface Mesh Morphing Details

Airfoil User Given

Inlet/Exit Constant circumferential motion defined by airfoil LE/TE

Midchord: replicate airfoil mid-camber motion

Fwd/Aft: linear taper to conform to inlet/exit motion

Hub/Case Slip condition. To be enforced during volume morphing stage.

Periodics

inlet and exit morphed surface meshes are computed using

angle shifts defined by airfoil leading and trailing edge

motion. Constant shift angle is applied to grid points on the

same circumferential grid line. Airfoil surface motion

morphed inlet and exit surface meshes with the periodic

motion definition in part 1 of the workflow, provide

sufficient information to compute morphed periodic surface

mesh (Figure 2). Hub and case surface meshes are not

computed at this time. The constraint that these meshes lie on

respective surfaces needs to be built in the volume morph

part of the workflow.

The volume part of the workflow begins with the morphing

of the boundary layer region (region 0 in Figure 12). For

every grid line emanating from the airfoil surface, and for

every node on the grid line, a displacement of the

corresponding surface node is applied. After completion of

this step, several initialization steps are performed to allow

for the iterative part of the workflow to begin. The active

domain and its boundary are defined (all the domain except

region 0). Interpolation law is set to linear along grid line

length. A set of priority rules are defined to facilitate the

priority sorting of connectivity paths during the search step of

an iteration. The sets of rules are divided into subgroups, the

lower group of rules serving as a tiebreaker in case two or

more equivalent paths exist. The order of the groups and the

order of boundary condition types are not arbitrary and are

driven by the application type. At the top of the priority are

paths that connect parts of the model (for example two airfoil

surfaces in the case of a multi-airfoil model). The reason: the

mesh quality near airfoil surfaces (or interfacing with airfoil

boundary layer) is of the highest importance for the quality of

a CFD simulation. Similarly, the periodic boundary condition

is placed in front of the inlet and exit since in most airfoil

meshes, the skewness of the mesh in the mid-passage (the

region between the airfoil and periodic surfaces) plays

important role in accurately resolving flow features like

vortices and shocks. However, if the flow is expected to be

subsonic (no shocks), one might prioritize wake mesh quality

and place the exit surface in front. Similarly, if this

simulation targets the interaction between blade rows in an

aircraft engine, and this is the second airfoil in the setup, the

quality of the inlet mesh region would be important to ensure

proper flow feature transition to the front of this airfoil. In

such cases, inlet boundary condition should be prioritized in

the workflow. (Note the importance of the flexibility of the

workflow. The one-size-fits-all approach does not apply

here.)

With priority rules and a priority queue in place, the iterative

search-and-interpolate part of the process can begin. During

the search step of an iteration, a set of paths (block chains)

connecting the surfaces of the active domain is collected. For

this example, the paths found in the first iteration are shown

in the upper left part of Figure 12 (labeled 1a thru 1d). Using

a priority set of rules, paths labeled as <1= are selected (upper
right of Figure 12). In the interpolate part of an iteration a

sweep is performed thru grid lines along direction <1=
connecting the airfoil boundary layer and the periodic

surface. For each grid line, displacements of the end nodes

are known (one end node on periodic surface mesh, the other

end node on the boundary layer region morphed in step 3.0).

Using linear interpolation, end node displacements are

interpolated on the nodes of the grid line. At the conclusion

of the iteration, the intermediate mesh shown at the bottom

right of Figure 12 is obtained (labeled as <1=).

The process continues with iterating on the updated active

domain (top left of Figure 13), searching and obtaining valid

paths (labeled 2 and 3), selecting paths labeled 2, and

interpolating along inlet grid lines to obtain the intermediate

mesh stage <2= at the end of the second iteration (bottom
right of Figure 13). In the final iteration, the remaining exit

region of the mesh gets morphed in a similar way.

 Figure 12. Morphing process: iteration 1

Figure 13. Morphing process: iteration 2

After the completion of the search-and-interpolate stage, the

remaining task is to ensure any surface constraints set in part

2 of the workflow are satisfied. In this example, surface mesh

constraints are applied to the bottom and the top layer of

the mesh such that the final morphed mesh conforms to the

target domain. Mesh nodes at the bottom layer are projected

to the hub and nodes at the top layer are projected to the case

surface. Radial projection (vector passing thru the axis of

rotation) is used to maintain rotational periodicity. In the final

step displacements of the end nodes are interpolated on the

nodes of the grid lines connecting the hub and case surfaces.

3.2 Method Performance

The discussion on method performance includes an

assessment of runtime, scalability, and the ability to handle

large displacements.

As previously noted, the bulk of the computational cost lies

with the interpolation stage of the volume morph which is

implemented as a single nodal sweep. Hence, it is expected

that the method scales linearly with the nodal count and that

the run time is short. The graph in Figure 14 shows the

runtime performance of the method for the workflow

example described in the preceding section. For the

scalability test, the mesh count was varied from 0.1 to 40

million nodes. Method indeed achieves linear scalability with

respect to the nodal count. From the same graph, one can see

that mesh with 25 million nodes morphs in about 2 seconds

on a single CPU. (The reader should focus on ball-park run-

time performance rather than the value. The exact run time

will depend on the system hardware, and implementation of

the workflow).

The ability to handle large displacements is tied to the key

feature of the method: the interpolation of surface

displacements along grid lines connecting domain surfaces.

The goal is to produce a morphed mesh that satisfies quality

thresholds. In real-life applications, the quality of a mesh is

determined using a set of metrics depending on application

specifics. For this presentation, aspect ratio and element

determinant are chosen to demonstrate the method’s
performance. Aspect ratio plays important role in

characterizing the boundary layer mesh region and is used on

a relative scale. For reliable CFD the aspect ratio of morphed

and baseline meshes in this region should be very similar.

Determinant, on the other hand, is used on the absolute scale:

all elements should have a determinant larger than the

threshold value set by the design practice.

The quality of the mesh should be assessed separately for

boundary and far-field regions. (CFD mesh has different

properties, and the morphing method differs in these regions.)

As described above, the application of constant displacement

on the nodes of grid lines emanating from boundary wall

surfaces preserves element shape. Therefore, minimal

changes are expected during morphing for this mesh region.

The table in Figure 14 illustrates the performance of the

method for the airfoil redesign example: aspect ratio and

determinant in the near-field mesh region are essentially

unchanged during morphing.

For the far-field region, during every iteration, end nodal

displacements are interpolated on all topologically parallel

grid lines of the block chain that connects domain surfaces.

Figure 14. Method performance: airfoil redesign

Critical to quality is the level of distortion added to the

element during interpolation, which in turn is directly related

to relative displacements of element vertices. Neighboring

grid lines undergo the same interpolation law on similar arc

lengths and similar nodal distribution along the grid lines. If

the displacements of the neighboring end nodes on the

surfaces of the domain are not drastically different, the

interpolation process will result in an element distortion level

that can be tolerated by the original element shape. A good

quantitative measure to gauge whether a given displacement

field can be handled by interpolation is the non-dimensional

relative displacement metric. It is computed at the element

level as the maximum nodal relative displacement divided by

the average element length. (Note that this metric is

directional 3 a separate value is computed for each of the

three grid directions). The value of 1 would mean that the

maximum relative displacement of nodes of the element

equals the element size. This metric depends mainly the on

the surface displacements slope. The choice of the

interpolation law does have some influence but to a much

lesser degree. During morphing, this relative displacement is

<added= to the pre-existing element distortion of the baseline

mesh, so the answer on how large displacements the

morphing can handle depends on the quality of the

originating mesh as well. Experience in using the proposed

method shows that fields with maximum nondimensional

relative displacement metric smaller than 0.25 are handled

well during morphing, which spans many real-life CFD

applications like optimization, airfoil flutter, wind turbine

vibrations, and similar applications illustrated in Section 1 of

this paper. The table in Figure 14 illustrates the performance

of the method for the airfoil redesign example: changes to

both determinant and aspect ratio metrics in the far-field

mesh region are minimal.

As hinted above, the choice of interpolation law plays a role

in the final mesh quality. But more importantly, the choice of

the interpolation law determines the shape and smoothness of

the displacement field in the mesh domain. The simplest

choice is a linear interpolation (by grid line length). It results

in the C0 displacement field, with the slope discontinuities

occurring at the boundaries of the domains defined in

each iterative step. Higher-order interpolation can be used to

ensure the desired level of smoothness of the displacement

field. Figure 15 illustrates a sample grid line in the morphing

region <1= of the first iterative step of the airfoil redesign
example. The grid line connects the boundary region (marked

as <0= with the periodic surface. The straight blue line depicts

the displacement field distribution along the grid lines <1= (in
region 1) and <0= (in boundary layer region) when linear
interpolation is used and with the assumption of frozen (no

motion) periodic surface. Dashed lines correspond to the

motion of the respective region on the opposite side of the

airfoil. The displacement field exhibits slope discontinuities

at the interface to the boundary layer region and the location

of the periodic boundary. For some applications, this

discontinuity may not pose a problem. The morphed mesh

may have a slightly higher or lower element growth ratio at

locations of discontinuities, but this change may be within the

variations already present in the original mesh. However, the

smoothness of the displacement field might be of importance

for other applications (e.g. fluid-structure interaction) where

mesh motion plays a role in a numerical scheme. In such

cases, a switch to higher-order interpolation might be needed.

(shown as red curve in Figure 15).

 Figure 15: Interpolation law choice

4. UNSTRUCTURED MESH MORPHING

The morphing approach outlined in the previous section has

several strong points. It robustly handles large mesh motion,

is very fast, and scales linearly with mesh count. The main

drawback is that it is limited to structured CFD mesh

applications.

This section describes the extension of the above approach to

morphing unstructured meshes. The goal is to retain the good

sides of the method but to relax the requirement of structured

baseline mesh. The main idea for the extension originates

from the way how the structured mesh gets morphed. Special

attention was paid to the boundary layer mesh region in the

vicinity of walls, where relative mesh vertex motion is kept to

a minimum, and prescribed displacement is diffused into the

volume only as one moves away from the walls. This idea

can be extended to unstructured meshes, provided the domain

can be split into near and far-field regions.

To realize such a split, two actions need to be performed. A

boundary between two regions needs to be defined, followed

by a decomposition step.

Boundaries between near and far-field mesh regions should

be defined automatically (any user intervention defeats the

purpose of fast morphing). The shape of the boundary should

be simple, not dependent on surface details, but resemble

global model features to stay reasonably close to the

structure. This is precisely the same set of criteria used in

shrink-wrap technology where the idea is to walk over small

features and retain only the global shape of the structure. For

mesh split, the emphasis is on simplicity and automation. The

length of surface offset used during shrink wrap is not of the

primary concern. In the previous section, we used simple

airfoil models to showcase the structured morphing approach.

Imagine now that those airfoil models come with all the

complexity of real hardware: tip squealers, cooling holes,

vortex generators, tip shrouds, and part-span shrouds, to

name a few. Inevitably, such models would need to be

discretized in an unstructured manner. However, from a 10-

foot distance, the model would still look like an airfoil. One

can provisionally scan the baseline surface mesh model,

remove all local features for example section by section),

compute simplified cross-sections, and <wrap= all exotic
dimples, undulations, and similar, by offsetting sufficiently

enough outward. The shrink wrap technology is not new, and

it is readily available in many commercial meshing packages

today. Additionally, many structures of interest can be

shrink-wrapped with very simple actions: airfoil wing and

fuselage, wind turbines, and turbomachinery blades can all be

approximated with primitive cylindrical structures.
Once the wrap surface is defined, domain decomposition can

be used to separate the originating mesh into near-field

(elements inside) and far-field (elements outside) regions.

A simple model of a swinging wrecking ball is used to

illustrate the steps of the unstructured mesh morphing

process. The baseline mesh model and prescribed

displacement field are shown in Figure 16. The model

consists of a ball hanging on a rope attached to a crane. The

ball swings toward the crane as shown. Figure 17 illustrates

the shrink-wrap model around the rope-ball model. Note that

in a real application, rope and ball could be replaced with, for

example, an aircraft wing with arbitrary geometry detail

level. The shrink-wrap model could still be a circular

cylinder. Mesh decomposition into the near-field region

around rope (red), on-the-fence (white), and far-field mesh

regions (light blue) is shown in Figure 18.

The Mesh morphing process splits into two stages. First, the

nodes (elements) of the near-field mesh region are moved.

Like in the case of structured mesh morphing, the goal is to

preserve the mesh characteristics as much as possible. The

approach, again, is to distribute surface displacements within

the near-field region in a pointwise rigid way to minimize

boundary layer mesh distortion.

 Figure 16. Swinging wrecking ball model

 Figure 17. Shrink wrap of the ball-crane model

 Figure 18. Mesh decomposition

Surface displacements are propagated through the prism

boundary layer in the same way as for structured meshes by

applying constant motion on the mesh line emanating from

the surface and going through the thickness of the

boundary layer. From there, displacements are propagated

one element layer at a time until all elements of the inner

mesh region are exhausted. In doing so, the vertices of the

tetrahedral elements of the previous layer serve as the sources

to compute the displacements of the vertices of the elements

in the next layer. Various weighting schemes can be used to

propagate the displacements in the outward direction, starting

from simple unweighted averaging, but also considering local

model curvature, element quality, distance proximity, etc.

Layer structure and displacement propagation scheme for a

cross-section of the rope in the ball model and simple airfoil

model are shown in Figure 19.
After all vertices of the inner mesh region are assigned the

displacement value, the morphing of the far field can start.

Following the logic of the structured mesh morphing process,

the outer boundary of the inner mesh region takes the role of

the active region boundary. Unlike the structured mesh case,

there is no underlying block structure and structured grid

lines to serve as the interpolation medium.

Figure 19. Layer progression for inner mesh
displacement distribution

The shape of the domain boundary is simple (from the shrink

wrap), and that boundary surface is readily discretized using

structured surface mesh (see Figure 17 for the example).

This is where another tool from the pre-processing suite 3

automated blocking generation 3 is used to generate

structured background mesh over the far-field mesh region

with shrink-wrap surface mesh at its boundary. Assuming

such mesh is generated the following actions can be taken: i)

Project displacements of the outer layer of the inner mesh

region onto the shrink-wrap surface, ii) morph the structured

background mesh to distribute the displacement field into the

domain, iii) project computed displacement field from

structured background mesh onto the nodes of the baseline

unstructured mesh.

The steps listed above are analyzed in more detail.

At the heart of the process is the assumption that the

structured background mesh can be readily generated. Indeed,

the far-field mesh region has a simple shape (shrink-wrap

boundary). Automated block generation methods can be used

to chunk and generate background structured mesh. Such

processes can be found in commercial packages that operate

on turbomachinery CFD meshing. More sophisticated

methods capable of discretizing complex domains are

described in [10], [11], [12], and [13] among others. Using

these methods, background structured mesh can be

automatically generated for the target class of applications

(airfoil turbomachinery, fuselage-wing, wind turbine, etc.).

Background meh for the rope-ball model is shown in Figure

20. Note, that the structured mesh serves only as the

background medium to compute and distribute the target

displacement field into the far-field mesh region where the

elements are typically large (much larger than in the near-

field region 3 see Figures 18 and 19 for examples. These

elements can tolerate larger relative nodal displacements,

including numerical <imperfections= that might arise from

using a coarser background mesh. The message here is that

the background mesh does not need to be perfect in terms of

resolution and smoothness. The resolution should be such to

allow for a sufficiently smooth displacement field but can be

much coarser than the original unstructured mesh.

Once the background mesh is available, the next step is to

compute the displacements on its surface 3 the shrink-wrap

surface. The shrink-wrap surface is fully covered by the outer

layer of near-field region elements (white elements in Figure

18). Simple, element-wise projection can be used to compute

the displacements for each of the nodes on the shrink-

wrap surface. Note that this step is local (localized to each

element of the interface), and explicit in nature.

Displacements for each node on the shrink-wrap surface are

computed by interpolating the inside mesh element of the

original mesh that contains it.

 Figure 20. Structured background mesh

From there, the structured background mesh gets morphed.

The method described in the previous section is used. This

step is the key element in the process since allows for

explicit, fast, and scalable displacement field computation.

By switching to structured mesh to compute the displacement

field, the time-consuming connectivity-related issues of

unstructured meshes are bypassed, presented in the form of

expensive implicit schemes for displacement computation.

Finally, the displacement field computed on the nodes of the

structured meshes needs to be projected to the nodes of the

original unstructured mesh. Like in the forward projection

step done above, this process is also local and explicit in

nature 3 no system of equations involved, just pure

elementwise interpolation.

 Figure 21. Near-field mesh morphing

 Figure 22. Displacement of the shrink-wrap mesh

Figures 21, 22, and 23 illustrate the steps outlined above for

our swinging ball model. Figure 21 shows a comparison of

the baseline and morphed meshes for a few cross-sections of

the inner mesh region. The displacement of the shrink-wrap

surface is shown in Figure 22, and the motion of the

background mesh is shown in Figure 23. Finally, mesh

motion for the far-field (outer) mesh region for a cross-

section of the rope-ball model is shown in Figure

24.

Figure 23. Motion of the background mesh

Figure 24. Baseline and morphed mesh comparison

5. CONCLUDING REMARKS

This presentation on mesh morphing has two goals. The first

half of this paper discusses the elements of the mesh

morphing environment, and the interaction of the morphing

system with a wider set of pre-processing techniques. Mesh

morphing can reach its full potential only when approached

holistically. Several examples are shown demonstrating how

such interactions lead to qualitatively new simulation

capabilities.

In the second part, the focus is narrowed to volume mesh

morphing. An explicit interpolation-based approach to the

morphing of structured meshes is proposed. The method

handles large displacements, has a fast run time, and scales

linearly with mesh count. The proposed method is then

extended to the morphing of unstructured meshes by

combining it with several pre-processing techniques,

demonstrating the benefit of the system-level approach.

REFERENCES

[1] M. L. Staten, S.J. Owen, S. M. Shontz, A.G. Salinger,

T.S. Coffey, <A comparison of mesh morphing

methods for 3D shape optimization=. Proceedings of

the 20th International Meshing Roundtable, pp. 2933
311 (2011)

[2] M. Alexa, <Recent Advances in Mesh Morphing=,

Computer Graphics Forum, Vol 21(2), pp:173-192

(2002)

[3] A. de Boer, M.S. Van der Schoot, H. Bijl, <Mesh

Deformation Based on Radial Basis Function

Interpolation=, Computers & structures, Vol 85(11),

pp. 784-795 (2007)

[4] M.E. Biancolini, <Mesh Morphing and Smoothing by

Means of Radial Basis Functions (RBF): A Practical

Example Using Fluent and RBF Morph=, Handbook of

Research on Computational Science and Engineering:

Theory and Practice, Vol 2 pp. 347-380 (2011)

[5] T. Rendall, C.B. Allen, <Efficient Mesh Motion Using

Radial Basis Functions with Data Reduction

Algorithms=, Journa of Computational Physics Vol

228(17) pp:6231-6249 (2009)

[6] D. Seiger, S. Menzel, M. Botsch, <High Quality Mesh

Morphing Using Triharmonic Radial Basis Functions=,

Proceedings of the 21th International Meshing

Roundtable, pp. 1-15 (2012)

[7] M.E. Biancolini , A. Chiappa , U. Cella, E. Costa, C.

Growth, S. Porziani,= A Comparison Between the Bi-

harmonic Spline and the Wendland C2 Radial

Function=, Proceedings 2020 International Conference

on Computational Science, pp. 294-308 (2020)

[8] M.E. Biancolini , A. Chiappa , F. Giorgetti , S.

Porziani, M. Rochette,= Radial basis functions mesh

morphing for the analysis of cracks propagation=,

Proceedings of AIAS 2017 International Conference on

Stress Analysis, pp. 433-443 (2018)

[9] Myles Morelli, Tommaso Bellosta , Alberto Guardone,

<Efficient Radial Basis Function Mesh Deformation

Methods for Aircraft Icing=, Journal of Computational

and Applied Mathematics, Vol 392, (2021)

[10] David L. Rigby, <TopMaker: A Technique for

Automatic Multi-Block Topology Generation Using

the Medial Axis=, NASA Technical Report

NASA/CR42004-213044 (2004)

[11] Damrong Guoy, Jeff Erickson, <Automatic Blocking

Scheme for Structured Meshing in 2D Multiphase

Flow Simulation=, Proceedings of the 13th

International Meshing Roundtable, pp. 1213132 (2004)

[12] I. Malcevic, <Automated Blocking for Structured CFD

Gridding with an Application to Turbomachinery

Secondary Flows, 20th AIAA Computational Fluid

Dynamic Conference AIA 2011-3049 (2011)

[13] Harold J. Fogg, Cecil G. Armstrong, Trevor T.

Robinson, “New techniques for enhanced medial axis

based decompositions in 2-D=, Proceedings of the 23th

International Meshing Roundtable, pp. 1623174 (2014)

