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ABSTRACT

Anisotropic mesh adaptation is important for accurately predicting engineering quantities of interest with high-order
finite element discretizations. Spacetime approaches, whereby time is treated as an additional spatial dimension
and the mesh is fully coupled in space and time, have also shown to be e↵ective in reducing the number of degrees
of freedom needed to achieve a certain level of accuracy. Previous e↵orts have successfully demonstrated four-
dimensional mesh adaptation capabilities so as to support adaptive simulations in 3d+ t. However, these algorithms
have been restricted to sequential implementations. Parallel mesh adaptation strategies have become increasingly
important in 3d numerical simulations. Therefore, the goal of this work is to extend those strategies to perform parallel
four-dimensional anisotropic mesh adaptation. We employ a functionality-first approach to parallelize an existing
sequential mesh adaptation tool. This approach iteratively adapts the mesh while keeping partition interfaces fixed,
and then migrates partition interfaces into the interior so they can be adapted during a subsequent pass within an
adaptation iteration. We demonstrate that the algorithm scales well as the number of processors increases while
maintaining good metric conformity for three- and four-dimensional problems.
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1. INTRODUCTION

Anisotropic mesh adaptation is fundamental for ac-
curately predicting engineering quantities of interest
with high-order finite element discretizations [1, 2]. To
resolve unsteady physical phenomena in d dimensions,
space and time can be coupled and the problem can be
solved in a spacetime domain, whereby time is treated
as an additional spatial dimension. This approach re-
quires a (d + 1)-dimensional mesh, which means 4d
meshes are needed to solve unsteady 3d problems.

Adaptation strategies in this spacetime domain can
be categorized into (1) uniform, (2) tensor-product
[3, 4, 5, 6, 7, 8] or (3) unstructured anisotropic
approaches [9, 10, 11, 12, 13]. Yano [9] demon-
strated that tensor-product approaches are e↵ectively
isotropic and, whereas they o↵er a substantial degree-
of-freedom (DOF) savings over uniform refinement,
they are dramatically outperformed by a fully un-

structured anisotropic approach. In the context of
the one-dimensional problem of Figure 1 with a prop-
agating feature of characteristic size �, Yano [9] ex-
perimentally observes that uniform, tensor-product,
and unstructured anisotropic refinement approaches
respectively require O(��2), O(��1) and O(1) DOF to
achieve the same level of accuracy in the simulation.
This unstructured anisotropic spacetime approach has
been extended to 2d + t for convection-di↵usion [9],
wave equation [14] and oil reservoir simulations [11]
and to 3d + t for convection-di↵usion problems [13].
Jayasinghe also demonstrates that a spatiotemporal
approach scales very well with the number of paral-
lel processors when compared to time-marching ap-
proaches [12]. However, to fully realize the potential of
spacetime adaptive methods, large meshes, with mil-
lions or even billions of elements, are needed for practi-
cal engineering problems, thereby requiring a parallel
mesh adaptation algorithm.

98



x

t

;

d

Figure 1: Unstructured spacetime mesh adaptivity
can capture a feature with nominal size � using O(1)
elements, whereas tensor-product and uniform refine-
ment methods would require O(��1) and O(��2) ele-
ments, respectively, to achieve the same level of accu-
racy.

Chrisochoides describes a telescopic approach for par-
allel mesh generation and adaptation at various lev-
els of granularity [15]. Further, Tsolakis et al. give
an excellent overview of the goals and strategies for
parallel mesh adaptation [16]. The authors identify
five criteria which can be used to evaluate parallel
mesh adaptation codes: (1) stability, (2) reproducibil-
ity, (3) robustness, (4) scalability and (5) code reuse.
Similar to the work of Tsolakis, we aim for stability
and scalability. That is, we aim to maintain good
metric conformity while ensuring the algorithm scales
well as the number of processors is increased. Tso-
lakis also identifies two di↵erent approaches for par-
allel mesh generation and adaptation: functionality-
first and scalability-first approaches. Codes such as
EPIC [17] and Feflo.a [18] fit into the functionality-
first paradigm, whereby minimal changes are made to
existing sequential mesh adaptation software to extend
them to a parallel setting. Codes such as CDT3D [19]
and refine [20] are classified as scalability-first ap-
proaches, whereby functionalities are completed as
needed, but designed to be scalable across parallel pro-
cesses first.

The primary goal of this work is to parallelize a four-
dimensional mesh adaptation algorithm and demon-
strate that good metric conformity is obtained as the
number of processors increases. Our contribution is
an extension of existing techniques for 3d parallel mesh
adaptation to 4d, with a demonstration on benchmark
cases. We also show the algorithm scales well with
modest processor counts - we only present results for
up to 36 processors due to limitations on our computa-

tional resources. We use a functionality-first approach
whereby we maximize the code re-use of an existing
sequential mesh adaptation algorithm. We first elabo-
rate upon the sequential and parallel mesh adaptation
strategies. The latter builds from the idea of fixing
partition boundaries, and migrating the partition in-
terfaces into the interior. We then study the algorithm
on three- and four-dimensional problems and demon-
strate that the parallel algorithm scales well as the
number of processors increases, while also maintain-
ing good metric conformity.

2. SEQUENTIAL MESH ADAPTATION
STRATEGY

Our sequential mesh adaptation algorithm is based on
the local cavity operator approach, initially described
by Coupez [21, 22], later used by Loseille [23, 18] and
extended to 4d by Caplan [13, 24, 25]. The inputs to
the algorithm are (1) an initial mesh, (2) a metric field
described at the vertices of the mesh and (3) the ge-
ometry entity associated with each vertex of the mesh.
These entities could be geometry Nodes, Edges, Faces
or Volumes (for a 4d geometry) which can be speci-
fied via a geometry engine, such as EGADS [26, 27]
for 3d geometries. In our work, we study the geome-
try of a unit tesseract, which is bounded by 8 Cubes
(Volumes), 10 Faces, 32 Edges and 16 Nodes. The
topology of the tesseract is prescribed by traversing
the vertex-facet incidence relations of each geometry
entity [13]. Each vertex in the mesh is initially tagged
with the lowest-dimensional geometry entity on which
it lies, which is null for interior vertices that do not lie
on the geometry.

The local cavity operator approach iteratively modifies
the mesh T

k by removing a set of cavity elements C
k

around a mesh facet f (such as a vertex, edge, triangle
or tetrahedron), and then selecting a re-insertion ver-
tex p to connect to the cavity boundary @Ck, thereby
creating new elements denoted by B

k:

T
k+1 = T

k
\ C

k(f) [ B
k(p, @Ck). (1)

The advantage of the cavity-based approach is that all
classical mesh modification operators (splits, collapses,
swaps and smoothing) can be reformulated in terms
of Eq. 1 by the appropriate selection of f and p, thus
simplifying the implementation in 4d.

To schedule the local mesh modification operators, a
metric field is specified at each vertex of the initial
mesh. That is, a symmetric, positive-definite d ⇥ d
tensor is prescribed at each vertex. The input mesh
is retained in the background of the adaptation pro-
cess - the metric at a new location in the mesh (either
through an edge split or a vertex relocation) is ob-
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tained by the log-Euclidean weighted average of the
metrics from an element in this background mesh.

Following the conventions of the Unstructured Grid
Adaptation Working Group (UGAWG) [16, 28, 29],
the length of an edge between two vertices p and q is
computed as

`m(p,q) ⇡ `m(p)
r � 1
r log r

with r ⌘
`m(p)

`m(q)
, (2)

where `m(x) =
p

(q� p)tm(x)(q� p).

The quality of a d-simplex  (d = 2 for triangles, 3 for
tetrahedra and 4 for pentatopes) is computed as

qm() = �n
vm()2/dP

e2E()

`2m(e)
(3)

where E is the set of d(d+ 1)/2 edges of the simplex,
and vm() is the volume under the metric field:

vm() ⇡
p
detm⌫ v(), with ⌫ = arg max

⌫2
detm⌫ .

(4)

The goal of the mesh adaptation algorithm is to pro-
duce a metric-conforming mesh in which all edges of
the mesh have a length in the range [

p
2/2,

p
2] and all

elements have a quality greater than 0.8. To achieve
these goals, the algorithm begins by iteratively collaps-
ing all edges shorter than

p
2/2 and then performing

edge splits on edges longer than 2 without introducing
new short edges. Next, edge swaps are used to improve
the quality of the elements in two passes: first all edges
adjacent to an element with quality less than 0.4 are
targeted, then all elements with a quality less than
0.8 are targeted. A local vertex smoothing procedure
is then used to drive the edge lengths surrounding a
particular vertex to 1. This overall procedure is then
repeated using a target edge length of

p
2 for the split

operator. For further details on this algorithm, please
see the work of Caplan [13, 25].

3. PARALLEL MESH ADAPTATION
STRATEGY

We use a functionality-first approach to parallelize the
mesh adaptation algorithm and attempt to re-use as
much of the sequential mesh adaptation algorithm as
possible. This approach is similar to the work of
Digonnet [30, 31, 32] and Lachat [33, 34, 35, 36] in
which the mesh is divided into processing elements
to be remeshed by a third-party sequential remesher,
such as MMG3D [37]. Other coarse-grained par-
allel implementations which modify partition interi-
ors, while keeping interfaces fixed include refine [20],

pass

adapt

P = 1 P = 2 P = 3

A = 1

A = 2

A = 3

Figure 2: Parallel adaptation strategy. Each row cor-
responds to a single adaptation iteration (A), whereas
each column corresponds to a pass (P ) within the
adaptation iteration. Each partition (three in this ex-
ample) is highlighted with a di↵erent color. The goal
of the repartitioner after each pass is to migrate the
interfaces between partitions into the partition interi-
ors.

EPIC [17] and Feflo.a [38, 39, 18]. CDT3D uses a
fine-grained approach to modifying the mesh, designed
for shared-memory parallel mesh adaptation [40].

The main idea behind the parallel mesh adaptation
algorithm is to decompose the initial mesh (or re-
ceive a decomposed mesh from a numerical simulator)
into partitions and adapt the interior of each partition
while keeping the partition boundaries fixed. As long
as the sequential mesh adaptation algorithm allows for
these partition boundaries to be frozen, then the se-
quential algorithm can be used within each partition
without requiring any intrusive changes to communi-
cate boundary modifications. Communicating these
boundary modifications would require special treat-
ment for each mesh modification operator and would
need to be directly incorporated into the sequential
mesh adaptation code [41], which we chose to avoid. In
our setting, however, the di�culty lies in the fact that
partition boundaries must be migrated to the partition
interiors so as to ensure the mesh is metric-conforming
after each adaptation iteration. In order to migrate
the partition boundaries into the interior, a series of
“passes” are used within a particular iteration of the
global mesh adaptation procedure - each pass is then
followed by a repartition of the mesh. Here we use
ParMETIS [42] to repartition the mesh, though other
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tools such as PT-SCOTCH [43] or Zoltan [44] could
be used. The simplex-to-simplex adjacencies are used
to construct the graph that is passed to ParMETIS.
That is, each simplex is a vertex of the graph, and an
edge in the graph is created if two simplices share a
common (d � 1)-facet (i.e. a (d � 1)-simplex). The
primary goal of the repartitioning procedure is to mi-
grate existing partition boundaries into the interior
for subsequent passes. However, some (d�1)-facets in
the partition interfaces may not require modification,
therefore, it would be less necessary to migrate these
into the interior, when other areas in the mesh may
require more attention. As a result, we penalize edges
by imposing edge weights which are computed via the
“age” of the vertices of the elements in the mesh, an
idea inspired by refine [20]. The age of a vertex is
defined as the number of rejected mesh modifications
of any facet surrounding the vertex. Whenever a local
cavity operator is accepted, the age of any vertices in
the re-inserted ball become zero. Note that this proce-
dure is heuristic, and does not guarantee that partition
boundaries are migrated to interior.

An example of the parallel mesh adaptation strategy
in 2d is given in Fig. 2. Each row corresponds to a par-
ticular adaptation iteration (A), whereas each column
corresponds to a pass within the adaptation iteration
(P ). To clarify, each adaptation iteration corresponds
to an iteration of the adaptive numerical simulation,
whereby a solution is obtained, the error is estimated
and an optimal metric field is computed. This met-
ric field, along with the current mesh, is then passed
to the mesher. Within this call to the mesher, multi-
ple passes are performed (with the same metric field)
with the goal of migrating the partition interfaces so
as to adapt any necessary regions of the domain before
returning the next mesh to the solver.

In Fig. 2, we can see that the boundaries of the parti-
tions are migrated to the partition interiors from one
pass to the next - however, in some cases it is not
possible to migrate every interface (d� 1)-facet. Also
observe that partitions may be divided across multi-
ple connected components, as in Fig. 2 for A = 2 and
P = 3. Furthermore, partition boundaries may exhibit
arbitrarily shaped geometries, especially in 3d and 4d.
The only modification required in our sequential mesh
adaptation algorithm was to allow for vertices to be
fixed during the adaptation. In particular, each par-
tition fixes any vertex along a partition interface. We
additionally needed to add checks for the non-manifold
vertices that are produced for arbitrarily shaped par-
titions.

One di�culty is that we would like all global indices
of the fixed vertices to remain the same across all pro-
cessors. This is not a problem when an edge is split,
swapped, or when a vertex is smoothed, however, spe-

cial care is required for the collapse operator. Since
the collapse requires the removal of a vertex, any ele-
ment that references a vertex with a higher index than
the removed vertex must have its vertex indices decre-
mented. This would require communication between
processors whenever a collapse is performed. There-
fore, all fixed vertices are initially moved to the front
of the global list of vertices in the mesh. Other syn-
chronization techniques are possible, but this was the
simplest to implement within our framework.

After each re-partitioning procedure, the processors
must communicate which elements are retained, which
are sent to other partitions, and which are received
from other processors. We use the Message Passing
Interface (MPI) to exchange this information between
processors [45]. The communication cost of this ex-
change operation can be expensive, which we study in
the following sections.

Similar to the example in Fig. 2, we use three passes
per adaptation iteration since we experimentally ob-
served that this achieved good metric conformity while
not being too costly.

4. NUMERICAL EXPERIMENTS

To evaluate the parallel mesh adaptation algorithm,
we follow an approach similar to the work of Tso-
lakis [16, 46]. Starting with an initial mesh, conform-
ing to a prescribed metric, we scale the metric and
call our parallel mesh adaptation algorithm using a
prescribed number of processors. The di↵erence be-
tween our work and the work of Tsolakis, however, is
that since our sequential mesh adaptation algorithm is
designed to make small changes in a mesh, we scale the
metric iteratively instead of scaling it to a desired com-
plexity all at once. Specifically, our sequential mesh
adaptation algorithm works best when the incoming
edge lengths are between [0.5, 2.0], motivated by the
MOESS algorithm [9, 47, 48].

We study two types of cases: (1) when the metric field
is analytic and (2) when the metric field is obtained
from the MOESS algorithm, and only available at the
discrete vertices of the initial mesh. When the metric
field is analytic, each iteration i of our scaling proce-
dure consists of evaluating the prescribed metric on
the current mesh and then scaling the metric by a fac-

tor s =
p
2
i
. When the metric field is discrete, we

simply use a scaling factor of s =
p
2 on the metric of

the current mesh in the scaling iteration. Each com-
ponent of the metric field is multiplied by the scaling
factor s, which amounts to a multiplication of each
eigenvalue of the metric field by s. Thus, the number
of elements increases by a factor of

p
sd after each it-

eration, while maintaining the same anisotropic ratios
as in the initial mesh.
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scaleMeshParallel

input: initial mesh M, metric m
output: M

1 Mp  partition(M, p)
2 for i = 1 to niter
3 mp = evaluateMetric(m,Mp)
4 fix partition boundary @Mp
5 for j = 1 to npass
6 Mp  adapt(Mp,mp)
7 balance the mesh (repartition & exchange)
8 accumulate meshes from all processors into M

Algorithm 1: Scaling an initial meshM according to
a metric fieldm (either discrete or analytic) in parallel.
The input mesh is initially partitioned and distributed
across all parallel processors. For each adaptation it-
eration, the metric is re-evaluated on the current mesh
and scaled to produce the next mesh in the adap-
tation sequence. Each adaptation iteration involves
npass passes of the parallel adaptation algorithm so as
to migrate partition interfaces to the interior. The fi-
nal mesh is then accumulated on the root processor in
order to evaluate metric conformity.

This procedure is outlined in Algorithm 1. After per-
forming an initial partitioning of the mesh (line 1),
each processor receives a subdomain mesh Mp. We
then iterate until the desired complexity is reached.
Each processor evaluates the metric on the current
mesh and scales it according to the scaling iteration
counter. Then the parallel mesh adaptation proce-
dure begins by computing the partition boundaries,
labelling vertices which should be fixed, and then mov-
ing fixed vertices to the beginning of the vertex list
(line 4). Each processor then performs 3 passes of
adapting the mesh, migrating partition interfaces to
the interior (with a penalty on the age of an element),
and then exchanging the elements (and discrete met-
rics at the vertices) with all other processors. When
the procedure is complete, all meshes are accumu-
lated into the final mesh M (line 8) which is then
used to evaluate metric conformity. The latter is sim-
ply needed as a post-processing procedure which does
not contribute to the analysis of the timing results.
In the following, we measure the time spent adapting
the mesh (line 6) and performing the load balancing,
which consists of repartitioning and exchanging ele-
ments across processors (line 7) since these are the
most costly operations. Adapting the mesh is clearly
the bottleneck we wish to parallelize, but a poor design
of the mesh exchange data structures and procedure
can cause a significant overhead that is counterpro-
ductive to the parallel mesh adaptation process.

In each of the following subsections, we will first assess
the ability of the parallel implementation to conform
to the scaled metric field, whether analytic or discrete.
We will then revisit the scalability of the algorithm in

Figure 3: Initial 61k tetrahedra mesh for the Cube-
Polar case.

the final subsection.

4.1 Cube Polar (CP)

Before delving into some 4d cases, let us first evaluate
the algorithm on a 3d benchmark case proposed by
the UGAWG. The initial mesh passed into Alg. 1 is
generated by adapting an initially structured mesh to
the analytic metric:

m(x) = q diag(h�2
r , h�2

✓ , h�2
z )qt (5)

where hz = 0.1, hr = 0.001 + 0.198|r � 0.5| and
h✓ = 0.1d+0.025(1�d) where d = min(10|r�0.5|, 1).
Note that r =

p
x2 + y2 and ✓ = arctan(y, x). The

eigenvectors q consists of the unit vectors representing
the cylindrical system unit vectors in a Cartesian sys-
tem. The initial mesh, consisting of 63,237 tetrahedra
and 12,242 vertices, is shown in Fig. 3. Alg. 1 is then
used to scale this initial mesh and analytic metric to a
mesh with approximately 6.5 million tetrahedra using
various numbers of processors. Specifically, Alg. 1 is
run with 1, 2, 4, 8, 16, 24 and 36 processors. The edge
length and quality histograms of Fig. 4 demonstrate
that the final meshes exhibit excellent metric confor-
mity, regardless of the number of processors that were
used to scale the mesh. Table 2 further shows that
about 97% of the edges are in the quasi-unit range
and the number of tetrahedra with a quality greater
than 0.8 is at least 87% for all cases. Furthermore,
the number of elements in the final mesh is almost
identical across each test case. Although this test case
is still relatively small in the context of a practical
engineering simulation, it is large enough such that
the processor interface elements can be e↵ectively mi-
grated to the interior so as to achieve good metric
conformity.
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Figure 4: Edge length and pentatope quality distributions for the 3d Cube-Polar case.

Table 1: Metric conformity for the Cube-Polar case
running with p processors, generating nelem tetrahe-
dra: min. (`min) and max. (`max) edge lengths, per-
centage of edges in the quasi-unit range (%`unit), min.
quality (qmin) and percentage of tetrahedra with qual-
ity � 0.8 (%qunit).

p `min `max %`unit qmin %qunit nelem

1 0.41 2.11 97% 0.36 88% 6.46m
2 0.28 2.33 97% 0.25 88% 6.46m
4 0.22 2.10 97% 0.12 88% 6.45m
8 0.14 2.19 97% 0.17 87% 6.45m
16 0.18 2.21 97% 0.12 87% 6.45m
24 0.29 2.33 97% 0.14 87% 6.45m
36 0.36 2.73 97% 0.15 87% 6.45m

4.2 Tesseract Linear (TL)

Now, we will study some 4d problems. The initial
mesh for the Tesseract Linear (TL) case was generated
from our sequential 4d mesh adaptation code using
an analytic metric that emulates a moving boundary
layer, described by

m(x) = q diag(h�2
x , h�2

y , h�2
z , h�2

t )qt

where q is a rotation matrix of an angle ↵ =
arctan(0.25, 1) radians about the xy plane, hx =
hy = hz = 0.2 and hz = 0.002 + 0.396d with d =
|cos↵z�sin↵t�0.5 cos↵|), which is the distance to the
rotated plane of the boundary layer. The initial mesh
contains 120,054 pentatopes and 8,297 vertices. The
boundaries of this initial mesh, extracted at the t = 0,
t = 1 and x = 0 hyperplanes are shown in Fig. 5. Us-
ing Alg. 1 with this initial mesh, the analytic metric is
scaled to preserve the anisotropy ratios to eventually
produce meshes with 6-7 million pentatopes. Fig. 6

Table 2: Metric conformity for the Tesseract-Linear
case running with p processors, generating nelem pen-
tatopes: min. (`min) and max. (`max) edge lengths,
percentage of edges in the quasi-unit range (%`unit),
min. quality (qmin) and percentage of pentatopes with
quality � 0.8 (%qunit).

p `min `max %`unit qmin %qunit nelem

1 0.16 2.43 93% 0.25 52% 7.47m
2 0.23 2.53 93% 0.29 51% 7.42m
4 0.20 3.00 93% 0.27 51% 7.37m
8 0.16 4.60 92% 0.20 50% 7.32m
16 0.08 4.88 89% 0.11 45% 6.66m
24 0.11 5.37 86% 0.11 41% 5.95m
36 0.07 4.55 84% 0.07 37% 5.63m

shows the length and quality histograms, measured
under the scaled analytic metric, for the final meshes
produced using 1, 2, 4, 8, 16,, 24 and 36 proces-
sors. Overall, metric conformity is quite similar for
all numbers of processors, with a slight degradation
in the fraction of quasi-unit edges and quasi-unit pen-
tatopes as the number of processors increases. The
final meshes are still quite small - the added number
of processors for a small mesh produces more interface
elements that are frozen during the parallel adaptation
process. These metric conformity results are summa-
rized in Table 2. With 1�8 processors, over 90% of the
edges are in the quasi-unit range, and over 50% of the
pentatopes have a quality above 0.8. These results are
similar to initial ratios of the edges and pentatopes
within the quasi-unit ranges for the initial mesh of
120k pentatopes. These statistics, however, degrade to
89%, 86% and 84% in the fraction of quasi-unit edges,
and 45%, 41% and 37% in quasi-unit pentatopes for
16, 24 and 36 processors, respectively.

103



(a) t = 0 (b) t = 1 (c) x = 1

Figure 5: Boundaries of the initial 100k pentatope mesh for the Tesseract-Linear case.
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Figure 6: Edge length and pentatope quality distri-
butions for the 4d Tesseract Linear case.

4.3 Tesseract Wave (TW)

Next, we consider a case in which the initial mesh was
obtained from the Mesh Optimization via Error Sam-
pling and Synthesis (MOESS) algorithm. Specifically,
the mesh was obtained by adapting to the L2 error in
the function

u(x, t) = exp(�t) exp
�
�200 (r(t)� ||x||)2

�
,

with r(t) = 0.4 + 0.7t, using a linear discontinuous
Galerkin discretization. The initial mesh consists of
233,248 pentatopes and 14,515 vertices - the bound-
aries of this mesh, extracted at the t = 0, t = 1 and
x = 0 hyperplanes are shown in Fig. 7. Due to symme-
try, we are only modeling one eighth of the expand-
ing spherical wave. The sphere at it’s initial radius
is visible at t = 0 (Fig. 7a), and at it’s final radius
at t = 1 (Fig. 7b). Along hyperplanes with a non-
constant t, we should see the geometry of a 3d cone,
which is the projection of the expanding sphere in 4d
(a 4d hypercone). The final metric obtained from the
MOESS algorithm is then saved and used as the ini-
tial discrete metric, which is then scaled according to
Alg. 1 to achieve meshes with approximately 7 million
pentatopes.

As in the previous case, metric conformity is excellent
(90% of the edges have a length in the quasi-unit range,
and 40% of the pentatopes have a quality greater than
40%) when the number of processors is still quite low
- specifically up to 8 processors. The edge length
and pentatope quality histograms are shown in Fig. 8,
and the metric conformity statistics are summarized
in Fig. 3. Again, metric conformity slightly degrades
when the mesh is over decomposed.

4.4 Scalability

Finally, we analyze the scalability of our parallel mesh
adaptation implementation. Due to limitations on our
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(a) t = 0 (b) t = 1 (c) x = 1

Figure 7: Boundaries of the initial 200k pentatope mesh for the Tesseract-Wave case.
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Figure 8: Edge length and pentatope quality distri-
butions for the 4d Tesseract Wave case.

Table 3: Metric conformity for the Tesseract-Wave
case running with p processors, generating nelem pen-
tatopes: min. (`min) and max. (`max) edge lengths,
percentage of edges in the quasi-unit range (%`unit),
min. quality (qmin) and percentage of pentatopes with
quality � 0.8 (%qunit).

p `min `max %`unit qmin %qunit nelem

1 0.20 4.82 92% 0.25 42% 6.86m
2 0.20 5.37 91% 0.19 41% 6.99m
4 0.14 6.77 91% 0.21 40% 7.05m
8 0.14 6.31 91% 0.21 40% 6.90m
16 0.18 5.06 89% 0.23 38% 6.59m
24 0.17 5.19 88% 0.22 37% 6.19m
36 0.15 4.63 88% 0.21 36% 6.37m

computational resources, this study is restricted to
smaller numbers of processors (up to 36). For runs
with 1� 24 processors, we used node A of Table 4 and
we used node B for runs with 36 processors. For ev-
ery test case, we report the total time to scale the
initial mesh to the final mesh (i.e. the total time
spent in Alg. 1). We also break down this total cost
into the time spent adapting and balancing the mesh,
since these were the most costly. The remaining time
was spent synchronizing the indices, pre-processing
the partitions (including moving the fixed vertices to
the front of the arrays), and the actual re-partitioning
of the mesh using ParMETIS.

The timing results are tabulated in Tables 5, 6 and
7. The total number of iterations used in Alg. 1 was
7, 6 and 10 for the Tesseract Linear, Tesseract Wave
and Cube Polar cases, respectively. We also report the
number of elements nelem and partition interface (d�
1)-facets n@P. Note that, in the case of the sequential
algorithm (p = 1), we still perform the algorithm with
3 passes, but only report the timing for a single pass.
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Table 4: Machines used in the scalability analysis.

node A 28 ⇥ Intel Xeon Gold 5120 @ 2.20GHz
node B 36 ⇥ Intel Xeon Gold 6140 @ 2.30GHz

Next, we analyze the scalability of the parallel algo-
rithm with respect to the sequential version. To be
fair to the sequential adaptation algorithm, we only
include adaptation time for one pass in our scalability
analysis - there is clearly no need to include the time
to migrate and re-partition the mesh, but we still per-
form some of the pre-processing steps which is ignored
in the timing of the sequential algorithm. Thus, the
final speedup of the parallel algorithm is measured as
the total time (for all passes of the parallel algorithm)
divided by the time for one pass of the sequential algo-
rithm (accumulated across all iterations), which is fur-
ther normalized by the number of elements since each
test case produced a di↵erent number of elements. The
speedup obtained with various processors for all three
test cases considered in this paper is plotted in Fig. 9.
A dashed line is used to show the ideal linear speedup.
Our algorithm exhibits a linear speedup with only a
few processors (up to 8), however, it begins to exhibit
a superlinear speedup with more processors.

Table 5: Total time (ttotal) for the Cube-Polar case
running with p processors, generating nelem tetrahe-
dra, broken into adaptation (% adapt) and interface
migration (% bal.) times, with the number of interface
triangles (n@P ) in the final repartitioned mesh.

p nelem n@P ttotal % adapt % bal.
1 6.46m - 1d:4h 100.0% -
2 6.46m 20.0k 1d:24m 93.1% 6.3%
4 6.45m 39.3k 7h:9m 90.1% 8.9%
8 6.45m 72.4k 2h:33m 87.8% 10.7%
16 6.45m 118.3k 56m:32s 86.7% 11.5%
24 6.45m 144.5k 31m:11s 86.2% 11.8%
36 6.45m 178.5k 16m:37s 82.6% 15.5%

The work performed by the mesh adaptation algo-
rithm is not linear in the size of the mesh, so the
speedup will be superlinear when the problem size is
evenly distributed across parallel processors. A previ-
ous analysis of the sequential mesh adaptation opera-
tors [25] suggests the work performed by, for example,
the insertion operator increases linearly with the size
of the mesh. Thus, the total work required to insert
vertices for a particular problem is roughly the num-
ber of edges to be split times the size of the mesh.
In parallel, the number of edges to be split is ideally
distributed evenly across all processors, and the size
of the partition is clearly smaller than the total size
of the mesh. Thus the cost of the insertion operator
is dramatically reduced (more than linear) when the
work is divided across a large number of parallel pro-

Table 6: Total time (ttotal) for the Tesseract-Linear
case running with p processors, generating nelem pen-
tatopes, broken into adaptation (% adapt) and inter-
face migration (% bal.) times, with the number of
interface tetrahedra (n@P ) in the final repartitioned
mesh.

p nelem n@P ttotal % adapt % bal.
1 7.25m - 2d:6h 100.0% -
2 7.42m 57.7k 2d:1h 98.2% 1.4%
4 7.37m 111.0k 15h:57m 97.7% 1.7%
8 7.32m 193.2k 7h:35m 97.4% 1.9%
16 6.66m 129.0k 2h:24m 97.6% 1.7%
24 5.95m 69.8k 1h:21m 98.0% 1.3%
36 5.63m 285.7k 42m:11s 97.2% 2.1%

Table 7: Total time (ttotal) for the Tesseract-Wave
case running with p processors, generating nelem pen-
tatopes, broken into adaptation (% adapt) and inter-
face migration (% bal.) times, with the number of
interface tetrahedra (n@P ) in the final repartitioned
mesh.

p nelem n@P ttotal % adapt % bal.
1 6.72m - 2d:17h 100.0% -
2 6.99m 100.7k 3d:1h 98.4% 1.3%
4 7.05m 155.2k 1d:2h 98.3% 1.3%
8 6.90m 191.3k 8h:19m 97.9% 1.6%
16 6.59m 214.7k 2h:59m 97.7% 1.7%
24 6.19m 184.0k 1h:21m 97.5% 1.9%
36 6.37m 259.9k 53m:50s 96.7% 2.6%

cessors. The fact that the mesh adaptation algorithm
exhibits this superlinear convergence while maintain-
ing reasonable metric conformity is a promising result
for large-scale 3d + t numerical simulations. Finally,
we report the time (and number of adaptation itera-
tions) to scale the mesh to much larger sizes with 36
processors for the same three test cases. All results
were obtained on node B of Table 4. Total run time
is reasonable, taking less than two days to perform 10
adaptation iterations to achieve a mesh with 69 mil-
lion pentatopes, and roughly 9 hours to perform 14
adaptation iterations to achieve a mesh with about 52
million tetrahedra. Furthermore, metric conformity
is better with these large meshes (compared with the
results on smaller meshes in the previous section).

5. CONCLUSIONS

We have demonstrated the implementation of a paral-
lel four-dimensional mesh adaptation for 3d+ t space-
time numerical simulations. The developed algorithm
builds o↵ existing 3d mesh adaptation algorithms in
which the mesh adaptation problem is divided across
a specific number of processors. Within a particular
pass of an adaptation iteration, the boundaries of each
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Table 8: Total time to adapt the mesh to 52 (Polar), 69 (Linear) and 47 (Wave) million simplices, along with metric
conformity statistics on quasi-unit edge lengths and simplex quality.

Case iter. nelem n@P ttotal % adapt % bal. %`unit %qunit
Polar (3d) 14 51.70m 703.7k 8h:59m 70.8% 28.1% 97.0% 88.0%
Linear (4d) 10 69.00m 1.779m 1d:17h 97.7% 1.7% 87.0% 45.0%
Wave (4d) 9 47.40m 1.173m 17h:24m 97.4% 2.2% 90.0% 45.0%
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Figure 9: Parallel speedup when adapting the meshes
for the Cube-Polar (Polar), Tesseract Linear (Linear)
and Tesseract Wave (Wave) cases.

partition interface are kept fixed while still allowing
the true geometric boundaries to be modified. Multi-
ple passes of the mesh adaptation algorithm are used
to migrate the previous partition interfaces to the inte-
rior of the partition so as to ensure the global mesh is
adapted before returning the mesh to the solver. The
algorithm was verified to be (1) scalable and (2) stable,
in which (1) good speedup was observed as the num-
ber of processors was increased and (2) the produced
meshes are metric-conforming for 3d and 4d problems.
In the future, we will investigate the performance of
the algorithm with larger numbers (hundreds or thou-
sands) of processors.

Future work involves integrating the parallel mesh
adaptation algorithm with a 3d + t numerical simu-
lation tool so as to perform large-scale mesh adapta-
tion for time-dependent partial di↵erential equations
in 3d [49, 50, 51, 52]. Furthermore, we hope to apply
the algorithm to problems in which the domain ge-
ometry is moving in time, particularly if the domain
topology is changing. A tool capable of generating an
initial 4d mesh within such a domain would first be
required.

The code associated with this work is publicly avail-
able in the LGPL-licensed software package: https:
//gitlab.com/philipclaude/avro.
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