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ABSTRACT

We propose a new method to mark for bisection the edges of an arbitrary three-dimensional unstructured conformal
mesh. For these meshes, the approach conformingly marks all the tetrahedra with coplanar edge marks. To this
end, the method needs three key ingredients. First, we propose a specific edge ordering. Second, marking with this
ordering, we guarantee that the mesh becomes conformingly marked. Third, we also ensure that all the marks are
coplanar in each tetrahedron. To demonstrate the marking method, we implement an existent marked bisection
approach. Using this implementation, we mark and then locally refine three-dimensional unstructured conformal
meshes. We conclude that the resulting marked bisection features an optimal bound of 36 similarity classes per
tetrahedron.
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1. INTRODUCTION

In adaptive finite element analysis, unstructured tetra-
hedral meshes have to be locally adapted. To this end,
one needs to perform local mesh modifications. One
successful modification is to bisect the required tetra-
hedra. This bisection operation splits a tetrahedron
by introducing a new vertex on the selected refinement
edge. Then, the vertices not lying on this refinement
edge are connected to the new vertex. These connec-
tions determine two new tetrahedra. The quality of
these tetrahedra depends on the criterion to select re-
finement edges. This edge selection is commonly based
on choosing either the longest edge [1, 2, 3, 4] or the
newest vertex [5, 6].

The self-similarity of the newest vertex bisection [5, 6]
has been favored over other bisection-based refine-
ments in many three-dimensional applications. Specif-
ically, in adaptive applications [7, 8, 9, 10] where it
is possible to start with a three-dimensional reflected
mesh [9, 10, 11, 12]. This preference is so since on re-

flected meshes local refinement with newest vertex bi-
section has the minimum mesh quality bounded. This
bound is a consequence of the bound in the num-
ber of similarity classes of mesh tetrahedra. That
is, for each initial tetrahedron, successive newest ver-
tex bisection does not generate more than 36 di↵erent
similarity classes [13]. This number of classes is the
smallest bound known for a three-dimensional bisec-
tion method.

Unfortunately, this optimal bound has not been met
in adaptive applications requiring complex three-
dimensional geometries. This lack is so since practical
methods to extract a reflection structure are limited to
specific meshes. For instance, meshes generated using
the Coxeter-Freudenthal-Kuhn algorithm [14, 15, 16]
or meshes where all the edges have an even number
of incident tetrahedra [9, 10]. Currently, there is no
method known to extract a strong reflection structure
from an arbitrary three-dimensional unstructured con-
formal mesh [8, 10, 13, 11, 12].

For three-dimensional unstructured conformal meshes,

86



there are alternative bisection methods with sub-
optimal similarity bound [17, 7, 18, 19, 13]. All these
methods lead to analogous locally refined conformal
meshes. Nevertheless, Arnold et al. [13] establish a
key connection between Maubach’s newest vertex bi-
section [8] and marked bisection [13]. Marked bisec-
tion leads at most to 72 similarity classes. This bound
is two times the number of similarity classes of newest
vertex bisection.

To meet this sub-optimal bound, marked bisection
[13] features one pre-process stage and two bisection
stages. In the pre-processing, for all the faces of the
initial mesh, the method conformingly marks the bi-
section edges. These edge marks determine a finite set
of marked tetrahedron types. For each type, there is a
specific bisection that leads to two children tetrahedra
of the next type. The first stage ensures that di↵erent
types of tetrahedra are all bisected to the planar type.
This type, independently for each tetrahedron, is the
beginning of the next bisection stage. In this second
stage, successive marked bisection cycles every three
bisection steps through a subset of the marked types
(unflagged planar, flagged planar, and adjacent). This
cyclic stage is equivalent to Maubach’s newest vertex
bisection [8] under specific conditions [13].

The previous overview allows reasoning about the
number of similarity classes. On the one hand, the
number potentially doubles the bound for the newest
vertex bisection due to the initial bisection stage.
On the other hand, the cyclic stage guarantees that
the rest of the generated similarity classes correspond
to those determined by the newest vertex bisection.
Accordingly, for some conformingly marked meshes,
marked bisection behaves as the newest vertex bisec-
tion [13]. Specifically, there are no more than 36 simi-
larity classes if the conformingly marked mesh is com-
posed only of unflagged planar or adjacent tetrahedra.

The question of whether there is a method to conform-
ingly mark as unflagged planar or as adjacent all the
tetrahedra of an arbitrary three-dimensional unstruc-
tured conformal mesh is still open [13]. A constructive
answer is of significant interest. It would lead to the
first marked bisection featuring an optimal similarity
bound for adaption in complex geometry. The main
goal of this work is to answer this question and imple-
ment the obtained method.

To meet the goal, our main contribution is to pro-
pose a new marking procedure for three-dimensional
unstructured conformal meshes. For these meshes, we
guarantee that all the tetrahedra become conformingly
marked as unflagged planar. To this end, we consider
three key ingredients. First, we propose a specific or-
dering of the global mesh edges. Second, relying on
this edge ordering, we deduce that all the mesh tetra-
hedra become marked as unflagged planar. Third, we

(a) (b)

Figure 1: Representations of a tetrahedron composed
of the vertices v1, v2, v3, and v4: (a) volumetric; and
(b) planar.

guarantee conformingly marked meshes by checking
that we fulfill the su�cient conditions for tetrahedral
meshes stated in [13]. To illustrate the application, we
implement the refine to conformity marked bisection
[13] but equipped with our planar marking method.
We use the implementation to locally refine three-
dimensional unstructured conformal meshes and check
the minimum mesh quality.

The rest of the paper is structured as follows. In Sec-
tion 2, we state the problem. In Section 3, we propose
a marking process and show that it generates conform-
ingly marked meshes. Next, in Section 4, we detail
the adaptation of Arnold’s bisection algorithm to our
proposed marking process. In Section 5, we present
several examples to show the features of the proposed
method. Finally, in Section 6, we detail the conclu-
sions and the future work.

2. PRELIMINARIES AND PROBLEM

We proceed to introduce the necessary notation and
concepts. Specifically, we introduce the preliminaries
related to conformal simplicial meshes and marked bi-
section. Finally, we state the problem of conformingly
marking unstructured simplicial meshes for bisection.

2.1 Preliminaries: definitions

A simplex is the convex hull of n+1 points p0, . . . , pn 2
Rn that do not lie in the same hyper-plane. We denote
it as � = conv(p0, p1, . . . , pn). We identify each point
pi with an unique integer identifier vi that we refer
as vertex. Thus, a simplex is composed of n + 1 ver-
tices and we denote it as � = (v0, v1, . . . , vn). We
have an application ⇧ that maps each identifier vi
to the corresponding point such that ⇧(vi) = pi. In
our application, we are interested in tetrahedra, three-
dimensional simplices. Herein, as in [13], we represent
volumetric tetrahedra composed of the vertices v1, v2,
v3, and v4, see Figure 1(a), in the plane by cutting
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and unfolding the corresponding triangular faces, see
Figure 1(b).

A tetrahedron has three types of entities: triangles,
edges, and vertices, which are sub-simplices composed
of 3, 2, and 1 vertices of ⌧, respectively. We denote
the faces, edges and vertices with the letters , e and
v, respectively. We define the list of local edges of a
tetrahedron ⌧ = (v0, v1, v2, v3) as the following sorted
list of edges

(v0, v1), (v0, v2), (v0, v3), (v1, v2), (v1, v3), (v2, v3).

We associate each triangular face of a tetrahedron ⌧
with the opposite face to a vertex of ⌧. As an ex-
ample, for the tetrahedron ⌧ = (v0, v1, v2, v3), the
opposite face to the vertex v0 is the triangular face
0 = (v1, v2, v3).

A mesh, T, associated to an open set ⌦ 2 Rn is a finite
collection of mutually disjoint tetrahedra such that

⌦̄ =
[

⌧2T

⌧.

A tetrahedral mesh is conformal if, for any ⌧1, ⌧2 2 T,
⌧1\⌧2 is either empty, or a common edge, or a common
triangle. We say that two tetrahedra ⌧1 and ⌧2 are
neighbors if they share a common triangular face.

2.2 Preliminaries: marked bisection

Arnold et al. [13] presented a marked bisection algo-
rithm for unstructured conformal tetrahedral meshes
that ensure locally refined conformal meshes and qual-
ity stability. Following, we present the terminology
and results required to overview their marked bisec-
tion algorithm.

The refinement edge e⌧ is the edge of ⌧ to be bisected.
Since an edge is shared by two triangular faces of the
tetrahedron, the triangular faces that contain e⌧ are
the refinement faces of ⌧. The remaining two trian-
gular faces are defined as non-refinement faces. For
those faces, one edge, referred as marked edge, is as-
signed. We recall that each triangular face i has a
refinement edge ei . Particularly, the refinement edge
e⌧ is the same as the ei of the refinement faces.

Since the non-refinement edges are adjacent or either
opposite to the refinement edge, we can classify the
marked tetrahedra into four types, see Figure 2: adja-
cent A, planar P , mixed M , and opposite O.

• Planar, P : the refinement edge and the marked
edges are coplanar. A planar tetrahedron is fur-
ther classified as type Pu or type Pf , according
to a boolean flag, see Figures 2(a), and 2(b), re-
spectively.

Algorithm 1 Refining a subset of a mesh.

input: Mesh T, set of element S ⇢ T to refine
output: ConformalMarkedMesh T2

1: function refineMesh(T, S)
2: T1 = markMesh(T)
3: T2 = localRefine(T1,S)
4: return T2

5: end function

• Adjacent, A: the marked edges are adjacent to
the refinement edge but are not coplanar, see Fig-
ures 2(c).

• Mixed, M : one marked edge is adjacent to the
refinement edge, and the other is opposite, see
Figures 2(d).

• Opposite, O: both marked edges are opposite to
the refinement edge, see Figures 2(e).

These tetrahedron types are the nodes of the directed
graph determining the marked bisection sequence, see
Figure 3.

Now, we can introduce the definition of marked tetra-
hedron, which is a modification of the one detailed in
[13]. Herein, a marked tetrahedron is the 5-tuple

⇢ = (⌧, e⌧ , e1 , e2 , t),

where ⌧ is a tetrahedron, e⌧ is the refinement edge, e1

and e2 are the marked edges of the non-refinement
faces, and t is the tetrahedron type.

A mesh is marked if all its tetrahedra are marked. A
marked conformal mesh is conformingly marked if each
triangular face has a unique marked edge. That is, a
triangular face shared by two tetrahedra has the same
marked edge from both sides. Accordingly, shared tri-
angular faces are bisected in the same manner from
di↵erent tetrahedra.

Remark 2.1 (Conditions to conformingly mark). To
guarantee that a conformal mesh is conformingly
marked, Arnold et al. [13] state that it is su�cient
to combine a strict total order of the mesh edges with
their marking process for tetrahedra. For instance, the
mesh edges can be sorted according to their length us-
ing a tie-breaking rule when the lengths are equal.

The marked bisection method, Algorithm 1, starts by
marking the initial unstructured conformal mesh and
then applies a local refinement procedure to a subset
of tetrahedra of the marked mesh. The marking pre-
process is devised to ensure a conformingly marked
mesh. Using this marked mesh, the local refinement
procedure, Algorithm 2, first refines a set of tetra-
hedra and then calls a recursive refine-to-conformity
strategy. This strategy, Algorithm 3, terminates when
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(a) (b) (c) (d) (e)

Figure 2: The five di↵erent type of marked tetrahedra of Arnold’s cycle: (a) unflagged planar tetrahedron, (b)
flagged planar tetrahedron, (c) adjacent tetrahedron, (d) mixed tetrahedron, and (e) opposite tetrahedron.

M O

Pu

A Pf

Figure 3: Directed graph of tetrahedron types for
marked bisection.

Algorithm 2 Local refinement of a marked mesh.

input: ConformalMarkedMesh T and S ⇢ T
output: ConformalMarkedMesh T0

1: function localRefine(T, S)
2: T̄ = bisectTetrahedra(T,S)
3: T0 = refineToConformity(T̄)
4: return T0

5: end function

Algorithm 3 Refine-to-conformity a marked mesh.

input: MarkedMesh T
output: MarkedMesh T 0 without hanging nodes
1: function refineToConformity(T )
2: S = getHangingNodes(T)
3: if S 6= ; then
4: T̄ = bisectTetrahedra(T,S)
5: T 0 = refineToConformity(T̄)
6: else
7: T 0 = T
8: end if
9: return T 0

10: end function

successive bisection leads to a conformal mesh. Both
algorithms use marked bisection to refine a set of ele-
ments, see Algorithm 4.

Remark 2.2 (Optimal similarity bound). If the con-
formingly marked mesh is composed only of unflagged

Algorithm 4 Bisect a set of tetrahedra.

input: MarkedMesh T, SetSimplices S
output: MarkedMesh T1

1: function bisectTetrahedra(T, S)
2: T1 = ;
3: for ⇢ 2 T do
4: if ⇢ 2 S then
5: ⇢1, ⇢2 = bisectTet(⇢)
6: T1 = T1 [ ⇢1
7: T1 = T1 [ ⇢2
8: else
9: T1 = T1 [ ⇢

10: end if
11: end for
12: return T1

13: end function

planar or adjacent tetrahedra, marked bisection does
not generate more than 36 similarity classes [13].

2.3 Problem

Our problem is to conformingly mark an unstructured
conformal tetrahedral mesh T1 exclusively with tetra-
hedra of type Pu. Thus, when applying successive
marked bisection, starting on the resulting marked
T1, we can guarantee an optimal number of similarity
classes, see Remark 2.2. Specifically, starting on the
unflagged planar mesh T1, if we locally refine a set of
elements S, we obtain a new conformal unstructured
marked tetrahedral mesh T2 with the corresponding
elements bisected. The marked mesh T2 is suitable for
a posterior local refinement. Furthermore, any succes-
sive local refinement process has the minimum element
quality bounded.

3. SOLUTION: CONFORMINGLY
MARKING AS UNFLAGGED PLANAR

Following, we detail our solution to conformingly mark
an unstructured conformal mesh with unflagged pla-
nar tetrahedra. To this end, we first introduce the
concept of consistent bisection edge. This concept
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Algorithm 5 Marking as unflagged planar.

input: Tetrahedron ⌧
output: MarkedTetrahedron ⇢
1: function markTetrahedron(⌧)
2: e⌧ = consistentBisectionEdge(⌧)
3: (v0, v1) = e⌧
4: 1 = oppositeFace(⌧, v0)
5: 2 = oppositeFace(⌧, v1)
6: e1 = consistentBisectionEdge(1)
7: e2 = consistentBisectionEdge(2)
8: t = Pu . Initialize type of tetrahedron
9: ⇢ = (⌧, e⌧ , e1 , e2 , t)

10: return ⇢
11: end function

ensures that we can always select the same bisection
edge for a given simplex, independently of its dimen-
sion. Based on this selection, we propose an element-
based marking process that generates unflagged planar
tetrahedra. We also check that our marking process
is equivalent to the standard face-based marking pro-
cess proposed in [13]. Finally, we guarantee that our
marking process leads to a conformingly marked mesh.
Accordingly, if we use a restricted version of standard
marked bisection to refine the resulting marked mesh,
we obtain the optimal number of similarity classes.

3.1 Marking edges: strict total order

To mark the mesh edges, we propose a strict total
order of the mesh edges. To this end, we use a lexico-
graphic order for the mesh edges that is inherited from
the order of the vertices. Specifically, we say that the
mesh edge ei = (vi1 , vi2) has lower global index than
the mesh edge ej = (vj1 , vj2) if vi1 < vj1 , or vi1 = vj1
and vi2 < vj2 . Note that the proposed lexicographic
order is strict and total since it is straight-forward to
check that is irreflexive, transitive, asymmetric, and
connected. Using this lexicographic order, we identify
each mesh edge with a unique integer by sorting all
the existing edges of the mesh according to the global
index criterion.

The consistent bisection edge of a simplex (tetrahedron
or triangle) is the edge with the lowest integer assigned
in the edge ordering process. Note that the consistent
bisection edge of a simplex is unique because we use a
strict total order to characterize it.

3.2 Marking tetrahedra: unflagged planar

Using the consistent bisection edge, we propose a
marking process of a single tetrahedron that leads
to a marked tetrahedron of type Pu, see Algorithm
5. The input of the function is a tetrahedron ⌧ =
(v0, v1, v2, v3) and the output is the corresponding

(a) (b)

Figure 4: Marked tetrahedra with: (a) our element-
based marking method; and (b) the standard face-
based marking method.

marked tetrahedron ⇢. First, we obtain the consis-
tent bisection edge, e⌧ , of the tetrahedron, see Line 2.
Then, we obtain the opposite triangular faces of the
vertices of the bisection edge e⌧ , see Lines 4–5. After
that, we obtain the corresponding consistent bisection
edges e1 and e2 of 1 and 2, see Lines 6–7. Finally,
we initialize the tetrahedron type, Line 8, as t = Pu.

The proposed marking process always generates an un-
flagged planar tetrahedron. To check it, we need to
ensure that the consistent bisection edges selected in
Algorithm 5 define a triangle of the tetrahedron. Let
⌧ = (v0, v1, v2, v3) be a tetrahedron and let us reorder
the vertices to have vi0 < vi1 < vi2 < vi3 . The con-
sistent bisection edge is e⌧ = (vi0 , vi1) since this is
the edge with the lowest indices. The opposite faces
to e⌧ are 1 = (vi1 , vi2 , vi3) and 2 = (vi0 , vi2 , vi3),
respectively. For those faces, the consistent bisection
edges are e1 = (vi0 , vi2) and e2 = (vi1 , vi2), respec-
tively. Since e⌧ , e1 and e2 are connected generating
the triangle (vi0 , vi1 , vi2), they define a planar config-
uration. Figure 4(a) shows the obtained marked tetra-
hedron, where the red edge is the refinement edge and
the blue edges are the marked edges corresponding to
the non-refinement faces.

We can see that our element-based marking method
and the standard face-based one are equivalent, see
Figure 4. Note that they might not be equivalent since
our marking procedure does not exactly proceed as the
standard procedure. Specifically, we do not explicitly
mark all the triangular faces of a tetrahedron, see Fig-
ure 4(a). In the standard approach, each face of a
tetrahedron has a marked edge that indicates which
edge has to be bisected, see red edges in Figure 4(b).
The refinement edge of the tetrahedron is the only edge
that has been marked on both adjacent faces. Thus,
after marking all the faces, we obtain that the marked
edges of the faces

1 = (vi0 , vi1 , vi2), 2 = (vi0 , vi1 , vi3),
3 = (vi0 , vi2 , vi3), 4 = (vi1 , vi2 , vi3),

are e1 = (vi0 , vi1), e2 = (vi0 , vi1), e3 = (vi0 , vi2)
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Algorithm 6 Conformingly marking a mesh.

input: ConformalMesh T
output: ConformalMarkedMesh T 0

1: function markMesh(T )
2: T 0 = ;
3: for ⌧ 2 T do
4: ⇢ = markTetrahedron(⌧)
5: T 0 = T 0 [ ⇢
6: end for
7: return T 0

8: end function

and e4 = (vi1 , vi2), respectively. Therefore, the re-
finement edge of ⌧ is e⌧ = e1 = e2 and the re-
finement faces are 1 and 2. The faces 3 and 4

are the non-refinement faces and their marked edges
are e3 and e4 , respectively. Thus, all the triangular
faces are also marked as an unflagged planar tetrahe-
dron. The edge that is marked from two triangular
faces corresponds to the refinement edge of the tetra-
hedron, see Figure 4(b). Thus, the refinement edge
and the marked edges obtained with our marking pro-
cess are equivalent to those obtained with the standard
marking process but equipped with our edge ordering.
That is, both marking methods generate an equivalent
unflagged planar tetrahedron.

3.3 Conformingly marking a mesh

To ensure that we obtain a conformingly marked mesh,
we need that our marking procedure fulfills the suf-
ficient conditions required in Remark 2.1. The first
condition is fulfilled since our ordering for mesh edges
is strict and total. Furthermore, we know that our
element-based marking process is equivalent to the
standard face-based marking process. Since both su�-
cient conditions are fulfilled, we can guarantee that the
marking process in Algorithm 5 leads to conformingly
marked meshes.

Now, we can detail the method to conformingly mark
an unstructured conformal tetrahedral mesh, see Al-
gorithm 6. The input is a conformal tetrahedral mesh,
T, and the output is a conformingly marked tetrahe-
dral mesh, T 0. We initialize an empty marked mesh
and generate a marked tetrahedron ⇢ for each tetra-
hedra ⌧ of the mesh T. Then, we insert the marked
tetrahedra into the marked mesh T 0. Finally, we re-
turn the conformingly marked mesh T 0 after marking
all the tetrahedra.

4. RESTRICTED MARKED BISECTION

To bisect our unflagged planar meshes, we consider a
restricted version of the standard marked bisection, see
Algorithm 7. The restricted method bisects a tetra-

Algorithm 7 Restriced marked bisection.

input: MarkedTetrahedron ⇢
output: MarkedTetrahedron ⇢1, MarkedTetrahedron

⇢2
1: function bisectTet(⇢)
2: t = type(⇢)
3: if t is Pu then
4: ⇢1, ⇢2 = bisectUnflaggedPlanar(⇢)
5: else if t is Pf then
6: ⇢1, ⇢2 = bisectFlaggedPlanar(⇢)
7: else if t is A then
8: ⇢1, ⇢2 = bisectAdjacent(⇢)
9: end if

10: return ⇢1, ⇢2
11: end function

Pu

A Pf

Figure 5: Restricted bisection cycle starting on un-
flagged planar type.

hedron according to its type. Moreover, it only needs
to consider the bisection cycle of length three for the
tetrahedron types Pu, Pf , and A, see Figure 5. In the
first case, Line 4, we bisect an unflagged planar tetra-
hedron. In the second case, Line 6, we bisect a flagged
planar tetrahedron. Finally, in the third case, Line 8,
we bisect an adjacent tetrahedron.

Figure 6 shows how to assign the refinement edge
and the marked edges of the children after bisecting
a marked tetrahedron of the proposed refinement cy-
cle, according to standard marked bisection. Without
loss of generality, we suppose that in all the cases the
refinement edge is e⌧ = (v0, v1). The vertex ⌫ is the
new vertex after the bisection of the edge e⌧ . We col-
ored the refinement edge and the marked edges with
red and blue, respectively. The first column corre-
sponds to a marked tetrahedron, and the second and
third columns correspond to the left and right chil-
dren, respectively. In rows, we have three di↵erent
cases. The first row corresponds to the bisection of
an unflagged planar tetrahedron to two flagged planar
tetrahedra. The second row corresponds to the bisec-
tion of a flagged planar tetrahedron to two adjacent
tetrahedra. Finally, the third row corresponds to the
bisection of an adjacent tetrahedron to two unflagged
planar tetrahedra.
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(a)

(b)

(c)

Figure 6: Cases for restricted marked bisection: (a) from a Pu to two Pf ; (b) from a Pf to two A; and (c) from a
A to two Pu.

(a) (b) (c)

Figure 7: Evolution of the maximum (red line) and minimum (blue line) mesh quality through the mesh refinement
iteration: (a) equilateral tetrahedron; (b) cartesian tetrahedron; and (c) random tetrahedron.

5. EXAMPLES

We present several examples to illustrate that our
proposed algorithm refines unstructured tetrahedral
meshes, generates locally adapted conformal meshes,
a finite number of similarity classes, and has a lower-
bounded quality. For all the examples, we have com-
puted the shape quality [20] of the mesh elements.
Then, we plot the minimum and maximum shape qual-
ity of the mesh in each refinement step to check that

the minimum quality is lower bounded and cycles.
Moreover, in the examples where we locally refine the
mesh, our code asserts that the mesh is conformal by
faces and that Euler’s characteristic of the mesh re-
mains constant.

The results have been obtained on a MacBook Pro
with one dual-core Intel Core i5 CPU, at a clock
frequency of 2.7GHz, and with a total memory of
16GBytes. As a proof of concept, a mesh refiner has
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(a) (b) (c)

Figure 8: Final mesh after twelve iterations of uniform refinement for: (a) equilateral tetrahedron; (b) cartesian
tetrahedron; and (c) random tetrahedron.

been fully developed in Julia 1.4. The Julia prototype
code is sequential (one execution thread), correspond-
ing to the implementation of the method presented in
this work.

5.1 Minimum quality is lower bounded and
cycles with uniform refinement

In this example, we show that the minimum quality is
lower bounded and cycles. To this end, we uniformly
refine a single tetrahedron several times. We denote
as Qkthe obtained mesh after k uniform refinements,

Qk = bisectTetrahedra(Qk�1,Qk�1),

where Q0 = ⌧. Thus, the mesh Qk is composed of 2k

tetrahedra and the accumulated number of generated
tetrahedra is 2k+1 � 1.

The method needs at least five iterations of uniform
refinement to generate 36, di↵erent similarity classes.
This number of iterations is so since the process only
accumulates 31 generated tetrahedra after four suc-
cessive uniform refinements. Assuming all of these
31 tetrahedra are of a di↵erent similarity class, the
pigeonhole principle ensures that they cannot corre-
spond to 36 di↵erent similarity classes. On the con-
trary, at the end of iteration five, the accumulated
number of generated tetrahedra is 63, greater than 36,
and thus, all the similarity classes might be generated.
After that iteration, further refinements do not gener-
ate new similarity classes, and therefore, the minimum
quality remains lower bounded. Moreover, if we per-
form three additional uniform refinements, we obtain
an entire cycle of the quality of length three. To il-
lustrate those quality cycles, we perform a series of
additional refinements.

Figure 7 plots the evolution of the minimum (blue line)
and maximum (red line) qualities during the uniform
refinement process. Figures 7(a), 7(b), and 7(c) illus-

trate the quality of an equilateral, cartesian and a per-
turbed tetrahedra, respectively. At most, we have to
perform five uniform refinements to generate all the
similarity classes. Thus, we perform 12 uniform re-
finements to see how the quality cycles. We can see in
Figure 7(a), for the most symmetric tetrahedron, how
the minimum quality achieves its minimum at itera-
tion five, and then it remains cycling. For the carte-
sian and perturbed tetrahedra, we can see in Figures
7(b) and 7(c) that we also have to perform five uni-
form refinements to generate all the similarity classes,
achieving the minimum quality of the mesh and start
to cycle. In Figures 8(a), 8(b), and 8(c) correspond
to the meshes Q12 of the equilateral, cartesian and
random tetrahedra after 12 uniform refinements.

We have generated all the similarity classes for the
three tetrahedra, and thus, the minimum mesh qual-
ity is achieved. Thus, this example illustrates that
the method is stable and the mesh quality does not
degenerate during successive refinement.

5.2 3D unstructured mesh: locally refining
a sphere

This example shows that the proposed refinement
scheme can be applied to locally refine unstructured
tetrahedral meshes. We recreate the first example
from Maubach [8] and Arnold et al. [13] but for a
sphere. Specifically, we generate an unstructured
three-dimensional mesh of a sphere of radius 2 and
centered at the origin. Let H be a hemisphere of a
sphere of radius one centered at (1/2, 1/2, 1/2) defined
by the equations

✓
x� 1

2

◆2

+

✓
y � 1

2

◆2

+

✓
z � 1

2

◆2

= 1, x � 1
2
.

We want to adapt the tetrahedral mesh T0 to the hemi-
sphere H. At each local refine iteration, we choose
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(a) (b)

Figure 9: Slice of the mesh T40 with the plane: (a) x = 1/2; and (b) y = 1/2.

Figure 10: Quality of Example 5.2: Evolution of the
maximum (red line) and minimum (blue line) mesh
quality through the mesh refinement iterations.

the tetrahedra that intersect the hemisphere H as the
refinement set. After forty iterations the mesh T40

is composed by 5806615 tetrahedra and 1045175 ver-
tices. Figures 9(a) and 9(b) show the T40 sliced with
the planes x = 1/2 and y = 1/2. Figure 10 shows
how the maximum quality remains constant because
it is achieved in each iteration of the local refinement.
The minimum quality decreases until its minimum is
achieved and then remains constant.

The final mesh is conformal and captures the chosen
hemisphere with smaller elements, while it contains
larger elements at the exterior boundary.

5.3 3D space-time mesh: locally refining
a iso-potential surface

The main goal of this example is to capture a three-
dimensional manifold defined by the movement of a
two-dimensional object. We show the evolution of the
gravitational potential defined by two particles that

move along the y-axis. Let

V (x, t) = �G

✓
m1

kx� p1(t)k
+

m2

kx� p2(t)k

◆

p1(t) = p1 + (0, vt), t 2 [0, 1]
p2(t) = p2 � (0, vt), t 2 [0, 1]

the equation that defines the gravitational potential.
For a given iso-value V0, V (x, t) = V0 defines a two-
dimensional embedded manifold in three-dimensional
space. Let H be the hyper-cylinder with spherical ba-
sis defined by the equations

✓
x� 1

2

◆2

+

✓
y � 1

2

◆2

= 1, 0  t  1.

In this example, we choose the iso-value V0 = �10
and the parameters G = 1, m1 = 1, m2 = 1, p1 =
(1/2, 1/8), p2 = (1/2, 7/8) and v = 3/8.

We generate an adapted tetrahedral mesh by locally
refining an initial mesh around the manifold. The ini-
tial mesh, T0, is composed of 3781 tetrahedra and 712
vertices. We generate the set of tetrahedra that inter-
sect H, Fk = {⌧ 2 Tk�1 |� \H 6= ;}. Then, for each
tetrahedron in Fk we compute the curvature of V (x, t)
at each simplex using the formula

e� =
3X

i=0

���hT
i r2V (xi, ti)hi

��� ,

where r2V (xi, ti) is the Hessian matrix of the poten-
tial V (x, t) evaluated at the vertices (xi, ti) of ⌧, and
hi = (xi, ti)� cM , where cM is the center of mass of ⌧.
After that, we choose as refinement set Sk the 10% of
the tetrahedra of Fk with more curvature. The idea is
to adapt the tetrahedral mesh not only to the elements
that intersect the iso-surface, but also to the areas of
the iso-surface with more curvature.

After 50 iterations of the local refinement process,
the generated mesh T50 has 8356894 tetrahedra and
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(a) (b) (c)

Figure 11: Slices of T50 with the plane: (a) t = 0.0; (b) t = 0.5; and (c) t = 1.0.

(a) (b)

Figure 12: Slice of the T50 with the plane x = 1/2, (a) with, and (b) without the iso-surface.

Figure 13: Quality of Example 5.3: Evolution of the
maximum (red line) and minimum (blue line) mesh
quality through the mesh refinement iterations.

1504344 vertices. Figures 11(a), 11(b) and 11(c) show

a slice of the tetrahedral mesh with the planes t = 0,
t = 0.5 and t = 1, respectively. The mesh has been lo-
cally refined around the iso-surface and therefore, we
have smaller elements near the iso-surface and large
elements far from the iso-surface. Figure 12 shows a
slice of the tetrahedral mesh with the plane x = 0.5.
We can see how the mesh captures the time evolu-
tion of the iso-surface defined by V (x, t). Figure 12(b)
shows the iso-surface that is extracted from the space-
time mesh. Figure 13 shows how the maximum quality
remains constant because it is achieved in each itera-
tion of the local refinement. The minimum quality
decreases until its minimum is achieved and then re-
mains constant.
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6. CONCLUDING REMARKS

In conclusion, we have shown the first bisection
method meeting the bound of 36 similarity classes
on three-dimensional unstructured conformal meshes.
For these meshes, we have guaranteed that our ap-
proach conformingly marks all the tetrahedra as un-
flagged planar. In this case, marked bisection behaves
as the newest vertex bisection, and thus, it features
the optimal bound. We have also checked, with our
implementation, that the minimum quality cycles for
three-dimensional unstructured conformal meshes.

We have answered an open question. Specifically,
we have proved that it is possible to mark as un-
flagged planar all the tetrahedra of an arbitrary three-
dimensional unstructured conformal mesh. To explore
alternative answers, we will study whether it is pos-
sible to mark all the tetrahedra as adjacent or as a
mixture of unflagged planar and adjacent elements.

In perspective, our marked bisection allows refining
with optimal similarity bound in adaptive applications
on three-dimensional complex geometry. The com-
plexity can be handled by the geometrical flexibility
of unstructured conformal meshes. On these meshes,
our marked bisection meets all the advantages of the
newest vertex bisection.
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