
AN EFFICIENT SOLVER TO APPROXIMATE CAD
CURVES WITH SUPER-CONVERGENT RATES

Julia Docampo-Sánchez Eloi Ruiz-Gironés Xevi Roca

Barcelona Supercomputing Centre-Centro Nacional de Supercomputacin BSC-CNS, Spain.
julia.docampo@bsc.es, eloi.ruiz@bsc.es, xevi.roca@bsc.es

ABSTRACT

We present a specific-purpose solver to approximate curves with super-convergent rates. To obtain super-convergence,
we minimize a disparity measure in terms of a piece-wise polynomial approximation and a curve re-parametrization.
We have numerical evidence that the disparity converges with 2p order for planar curves and b 32 (p � 1)c + 2 for 3D
curves, p being the mesh polynomial degree. To meet these rates, we exploit the quadratic convergence of a globalized
Newton’s method with the help of three main ingredients. First, we employ a nonmonotone line search reducing the
number of nonlinear iterations. The second ingredient is to introduce a log barrier function preventing element
inversion in the curve re-parameterization. Third, we propose a constrained optimization of the disparity functional
where the element interfaces are fixed, improving the computational e�ciency whilst preserving super-convergence.
We approximate analytic curves as well as CAD models with meshes of several polynomial degrees. We conclude that
the solver is well-suited to obtain super-convergent approximations to curves at reasonable computational times.

Keywords: curve approximation, distance optimization, super-convergence, high-order meshes

1. INTRODUCTION AND MOTIVATION

Geometric accuracy plays a major role in the perfor-
mance of unstructured high-order methods [1], requir-
ing curved elements to meet the desired accuracy. The
geometric accuracy is measured as the distance be-
tween the mesh and the target geometry. Tradition-
ally, in computational geometry, this corresponded to
the Fréchet and Hausdor↵ distances [2]. More recently,
distance optimization techniques have been proposed.
For example, in [3, 4] an area and Taylor based dis-
tance optimizer are used respectively for 2D and 3D
geometry. The authors report significant mesh-CAD
distance reductions at adequate computational times.

In addition, a disparity measure for generating optimal
curved high-order meshes was proposed in [5]. The
optimization combines a distortion measure for mesh
quality and a geometric L

2-disparity measure for geo-
metric error [6]. It produces optimal non-interpolative
meshes and it has been observed that this disparity
is 2p super-convergent [7]. This a↵ords a straightfor-

ward advantage: one can obtain the desired geometric
accuracy using smaller polynomial degrees than with
standard interpolation approaches.

As in many optimization problems, the original dispar-
ity was solved with a Newton method combined with
Armijo backtracking line search. The Armijo rule is
monotonic: the iteration is valid if the objective func-
tion decreases. For highly nonlinear problems, mono-
tonicity can trap the optimizer if it follows a narrow
curved valley (making very short steps or zigzagging)
and reduces the convergence rate [8]. This has moti-
vated the development of nonmonotone line searches.

The first nonmonotone line search was based on a max-
imum principle [9]. A step is considered valid if it im-
proves the objective function with respect to the max-
imum value of the objective functions corresponding
to the N previous iterations. Later, a family of non-
monotone line searches were proposed where a tuning
parameter shifts the search condition from maximum
to an average [10]. The authors prove global conver-

13

gence for this family of line search methods. In fact,
nonmonotone line searches have demonstrated an im-
provement in computational e�ciency, as well as like-
lihood of finding a global minimum [9, 11].

The work presented here focuses on improving the
computational performance during the optimization of
the disparity measure. Focusing on curves, we pro-
pose:

1. A reduction of the optimization dimension by fix-
ing the element interfaces.

2. A logarithmic barrier preventing curve tangling.

3. An average based (nonmonotone) line search.

Our results show that switching to a nonmonotone line
search consistently reduces the number of iterations.
Furthermore, by fixing the element interfaces we re-
duce the dimension of the optimization problem. Al-
though this constrained version is sub-optimal in terms
of the error compared to the original disparity (free
interfaces), we are able to preserve the same super-
convergent property. We have performed numerical
tests based on analytic curves as well as CAD geome-
try obtained through ESP [12].

This paper is organized as follows. In Section 2, we
define the disparity measure for curves and show the
super-convergent property through an example. In
Section 3, we discuss the disparity and constrained
optimization and the new solver features. Finally, in
Sections 4 and 5, we compare the errors and itera-
tions from the constrained and unconstrained prob-
lem studying several CAD geometries. The paper con-
cludes with Section 6 discussing main results.

2. DISPARITY MEASURE: CURVES

We begin by introducing the disparity formulation for
curves. We will discuss how it is defined, optimized
and implemented as well as show how it attains 2p
order. For more details, we refer the reader to [7].

2.1 Mathematical formulation

We define our mesh as a set of elements where for
each physical element e

P there is a reference element
e
R. The physical mesh M

P can be defined in terms
of an element-wise parametrization �

P :

�
P
|eR : eR ! e

P
⇢ Rn (1)

⇠ ! x =
p+1X

i=1

xiN
p
i (⇠), (2)

where p+1 are the number of nodes for the high-order
element eP , xi the Rn-physical coordinates of the i-th
node and {N

p
i }

p+1
i=1 a Lagrangian basis of degree p.

Let C ⇢ Rn be a curve parametrized by ↵ : [a, b] ⇢
R! C and consider the family of mappings:

⇧ :=
n
⇡ 2 H

1(MP
, C), ⇡ di↵eomorphism

o
.

M
P

C

M
R

M
Q

⇡⇠=

�P

'Q

↵

Figure 1: commutative diagram showing the ref-
erence mesh M

R, the mappings to the physical
meshes: �

P and �
Q respectively, the curve C and its

parametrization ↵ and the projection ⇡.

The diagram in Figure 1 shows the reference mesh
M

R, the physical mesh M
P consisting of three ele-

ments, the target curve C and the di↵eomorphism ⇡.
The disparity measure between the high-order mesh
and the curve is the minimal projection error

d(MP
, C) = inf

⇡2⇧

0

@
Z

MP

|x� ⇡(x)|2dx

1

A
1/2

, (3)

where |·| denotes the Euclidean norm of vectors. Defin-
ing the functional

E(x,⇡) =

Z

MP

|x� ⇡(x)|2dx (4)

=

Z

MR

|�
P (⇠)� ⇡ � �

P (⇠)|2|�̇P (⇠)|d⇠ (5)

= ||�
P
� ⇡ � �

P
||
2
�, (6)

we establish the following relation:

d(MP
, C)2 = inf

⇡2⇧
E(x,⇡). (7)

Notice that we use the sub-index � to denote that it
is integral with weight |�̇P

|.

Consider any possible curve reparametrization: ↵ � s.
As in (1), we define a 1D mesh through the mapping:

'
Q
|eR : eR ! e

Q
⇢ R (8)

⇠ ! s =
q+1X

i=1

si ·N
q
i (⇠). (9)

Note 1 The mesh �
P

is in the physical space whereas

'
Q

is a mesh in the parametric space. Modifying '
Q

results in di↵erent curve parametrizations.

14

As shown in Figure 1, we have that ⇡ � �P = ↵ � 'Q.
Hence, we can reformulate the problem:

E(x,⇡) = E(x, s) = ||x�↵ � s||2� (10)

=

Z

MR

|�
P (⇠)�↵ � 'Q(⇠)|2|�̇P (⇠)|d⇠. (11)

Therefore, the mapping s : MR
! M

Q needs to be
a di↵eomorphism, too. In Section 3, we show how to
enforce this numerically.

Optimizing E with respect to s gives the disparity be-
tween the mesh and the curve. If we optimize E with
respect to both x and s, we obtain the mesh with op-
timal geometric accuracy according to the disparity
measure. We define the optimal approximation as:

x
?
, s

? = argmin
x,s

||x�↵ � s||2� (12)

= argmin
x,s

Z

MR

|x(⇠)�↵ � s(⇠)|2|ẋ(⇠)|d⇠. (13)

Remark 1 The optimal s
?
(with respect to x

?
) min-

imizes the error in the tangent direction. In Figure

2, we draw the point-wise errors starting with an in-

terpolative mesh. After optimization, we see that the

errors align with the curve normal direction.

Interpolation Optimization

x

↵ � s

x
?

↵ � s?

Figure 2: a circle meshed with two p = 2 elements
showing the point-wise errors (solid deep blue lines).
The curve normal direction is denoted by dashed light
blue lines.

2.2 An example of super-convergence

Let us discuss the role played by the physical (x) and
parametric (s) meshes. Figure 3 shows several point-
wise errors: first, we approximate the circle with in-
terpolative meshes: (x0, s0). Then, we compute the
disparity measure of this mesh optimizing the para-
metric mesh, s? = argmin

s
||x � ↵ � s||2�. Finally, we

optimize both: x
?
, s

? = argmin
x,s

||x � ↵ � s||2�. No-

tice that the optimal mesh significantly improves the
geometric error.

|x�↵|

|x�↵ � s?|

|x
?
�↵ � s?|

⇠

|e
r
r
o
r
|

Figure 3: point-wise errors approximating a circle
with two elements of degree p = 2 obtained with: di-
rect interpolation |x(⇠) � ↵(⇠)| (dashed green), the
disparity |x(⇠)�↵ � s?(⇠)| (dotted light blue) and the
optimized disparity |x

?(⇠)�↵�s?(⇠)| (solid deep blue).

In Figure 4, we show convergence plots of the dis-
parity measure when approximating the same circle
using meshes of degree p = 2, 3, 4 and for several h-
refinements. The initial disparity gives to p + 1 or-
der. On the other hand, the slope of the optimal pair
(x?

, s
?) shows a convergence order of 2p.

CR=2p

||x�↵ � s?||�

||x
?
�↵ � s?||�

p = 2

p = 3

p = 4

||
·
||
�

Figure 4: slopes (log-log) of the disparity approxi-
mating a circle for several mesh refinements showing
the convergence rates (CR) before (x, s?) and after
(x?

, s
?) optimizing the disparity measure.

2.3 Optimization challenges

The solution (x?
, s

?) = argmin
x,s

E(x, s) is found with

a monotone backtracking line search:

(xn+1, sn+1) = (xn, sn) + ↵�n, (14)

where �n is a Newton step and ↵ 2 (0, 1] is such that

En+1 < En + ↵10�4�n ·rEn (Armijo rule). (15)

This rule ensures that the objective function (dispar-
ity) decreases in every step. However, it has an impact
on the number of iterations. Furthermore, decreasing
En does not assure valid solutions; since s is uncon-
strained, ↵ � s can tangle during minimization.

In Figure 5, we show the optimization results for the
six edges of a simple CAD body obtained from ESP
[12]. We study the number of iterations (top) as well as
the point-wise errors (bottom). The point-wise error
is computed as |x�↵�s| (initial) and |x

?
�↵�s?| (op-

timal), respectively. Observe that although the error
improves, the number of iterations is large, reaching
almost 4000 in several cases.

15

Iterations

CAD model

6 edges

Elements

p = 2 p = 3

Point-wise errors (top view)

Initial Optimal |error|

p = 2

p = 3

Figure 5: optimal disparity using the Armijo rule
for the 6 edges of a CAD model and meshes consisting
of 8 elements (degrees p = 2, 3). The plots show the
iterations taken by the optimizer (top) and the initial
and optimal point-wise errors respectively (bottom).

This paper addresses these computational issues.
First, we propose reducing the dimension of the opti-
mization problem by defining a constrained disparity
functional with fixed element interfaces. Second, we
insert a logarithmic barrier preventing s

? from tan-
gling. Last, we introduce the average line search in
[10] reducing the number of nonlinear iterations.

3. NEW SOLVER: CONSTRAINED
OPTIMIZATION, LOG BARRIER
AND AVERAGE LINE SEARCH

We now present a modified optimization approach for
the disparity. We give an analogous mathematical for-
mulation and highlight the di↵erences with respect to
the original method. Then, we focus on the solver de-
tails and introduce two major modifications: the log
barrier function which e↵ectively prevents curves from
tangling and the Zhang-Hager [10] line search.

3.1 Optimizing the constrained disparity

To optimize the geometric accuracy of a high-order
mesh, we solve the problem:

E(x?
, s

?) = min
x,s

||x�↵ � s||2�,

with x consisting of elements of degree p and s ele-
ments of degree q. Since we define our elements as

all possible mappings from the reference to the phys-
ical element: �

P : e
R
! e

P , we are considering all
possible partitions along the curve. Thus, the optimal
mesh according to the disparity alters the initial ele-
ment partition. This is illustrated in Figure 6 where
we have optimized a spiral curve. The initial element
configuration both in x and s changes after optimiza-
tion, moving elements towards the spiral end.

Initial Optimal

Mesh x

Mesh s

Figure 6: a spiral approximated with 6 elements
(interfaces denoted by �, ?) showing the meshes x and
s before and after optimizing the disparity.

Assume now a fixed element configuration and, at each
element, define the meshes by

x̃(⇠) = x0N
p
0 (⇠) + xpN

p
p+1(⇠)| {z }

xF (⇠)

+
pX

i=2

x̃i ·N
p
i (⇠), (16)

s̃(⇠) = s0N
q
0 (⇠) + sqN

q
q+1(⇠)| {z }

sF (⇠)

+
qX

i=2

s̃i ·N
q
i (⇠), (17)

where x0, xp+1, s0, sq+1 are fixed throughout the
optimization. Note that the indices run from 2 to p

and 2 to q respectively, excluding the first and last
nodes. We define the optimal constrained mesh as

x̃
?
, s̃

? = argmin
x̃,s̃

||x̃�↵ � s̃||2�. (18)

Note that the overall accuracy is dictated by the initial
element distribution. A uniform parametric partition
on the CAD may lead to a poor element distribution.
When a curvature-based mesher is not available, we
propose a pre-processing stage: first, optimize the un-
constrained disparity functional and obtain the linear
meshes (x?

1, s
?
1) with optimal (in the disparity sense)

element distribution. Then, we p-refine using s
?
1:

• For each element in the parametric mesh, we cre-
ate a high-order element in the physical mesh.

• For each element of the parametric mesh, the
nodes of the physical mesh are created as

xi = ↵ � s?1(⇠i), i = 1, . . . , p+ 1,

where ⇠i is a distribution of high-order nodes in
the master element.

16

Finally, we fix the high-order element interfaces and
optimize the constrained disparity functional. In Sec-
tion 4, we show an example of how the initial inter-
polative meshes benefit from this pre-processing stage.

3.2 Logarithmic barrier

The commutative diagram shown in Figure 1 holds if
all mappings are di↵eomorphisms. Since there are no
constraints in formulation (12), in particular, di↵eo-
morphism s is not actively enforced. The curve will
tangle if elements in the parametric mesh s are in-
verted. A possible solution is to add a constraint on
s
0 through the line search [13, 14]. Alternatively, we
can avoid curve tangling by introducing a log barrier
function.

log barrier [15, Ch.9]: consider the nonlinear pro-
gramming problem:

min f(x) subject to ci � 0, i = 1, . . . ,m.

The logarithmic barrier is a penalty term that moves
the optimizer away from violating any of the con-
straints ci. For a given µ, one can solve instead

min
x

P (x;µ) = min
x

f(x)� µ

mX

i=1

log(ci(x)).

A suitable curve parametrization should follow the
curve either forward or backwards. When we compose
↵ � s, we can ensure that the reparametrization pre-
serves direction by fixing the sign of s0 (positive being
forward and negative backwards) at the beginning of
the optimization. For example, in Figure 7 we show a
NACA curve and the initial parametrization ↵�s = ↵.
Note that since s has not been optimized, it behaves
as a linear mapping with a constant derivative.

↵ � s

s
0

Figure 7: initial parametrization of a NACA curve
and the s

0 profile with respect to the zero axis (. . .).

Regarding the disparity (either constrained or uncon-
strained), we want to solve:

min
x,s

E(x, s) subject to s
0(⇠) > 0 8⇠.

Remark 2 In this case, E can be used to obtain ei-

ther the original (x?
, s

?) or the constrained (x̃
?
, s̃

?
)

solutions. Both solutions benefit from this technique.

We need a continuous barrier function so we introduce:

P (x, s;µ) = E(x, s)� µ

Z

MR

log(s0(⇠))d⇠. (19)

For each µ, we optimize instead the following:

(x?
, s

?) = argmin
x,s

P (x, s;µ), (20)

and use that if s is not tangled, then

lim
µ!0

P (x, s;µ) = E(x, s).

Note 2 In practise, the log-barrier is activated only if

at a particular Newton step, the solver detects a change

in the sign of s
0
. This check is done oversampling s

at each element. At that point, it retrieves the previ-

ous valid pair (xn, sn) and solves instead the penalized

problem P (x, s;µk), k = 1, . . . ,M .

In Figure 8 (left), we show the optimized NACA curve
↵ � s without a log barrier where the curve develops
artificial loops. Observe how the derivative profile s

0

crosses the zero axis in several locations. On the right,
we show the same curve but optimized with the log-
barrier, resulting in a valid curve.

Unconstrained Log barrier

↵ � s

s
0

Figure 8: untangling the NACA curve. Optimizing
with and without log barrier. (. . .) denotes s0 = 0.

3.3 Zhang-Hager line search

We find the solution to our minimization problem com-
bining Newton with backtracking line search:

(xn+1, sn+1) = (xn, sn) + ↵ndn. (21)

Let r(·) and H(·) denote the gradient and Hessian
operators respectively and �n a Newton step:

H(En)�n = �r(En). (22)

At each iteration, we ensure a descent direction using:

dn :=

8
<

:

�n, if �n ·rEn < 0,

�

h
diag(H(En))

i�1
rEn, otherwise.

(23)

17

As mentioned before, the standard line search choice
is the Armijo (monotone) rule: ↵ 2 (0, 1] satisfies that

En+1 < En + ↵10�4dn ·rEn. (24)

Instead, we use a type of Zhang-Hager nonmonotone
line search [10]. Let C0 = E0, Q0 = 1 and define:

Qn+1 = ⌘nQn + 1 Cn+1 =
⌘nQnCn + En+1

Qn+1
, (25)

Notice that ⌘ ⌘ 0 gives Armijo’s monotone line search.
On the other hand, ⌘ ⌘ 1 gives an average based rule:

Cn =
1
n

nX

i=1

En, (26)

which is the one that we will use in our experiments.
Finally, ↵n satisfies Wolfe conditions:

En+1 Cn + �1↵nrEn · dn (27)

rEn+1 · dn � �2rEn · dn (28)

with �1 = 10�4 and �2 = 0.9 as suggested in [15].

3.4 Algorithm

We provide the implementation details of the proposed
solver for the optimization of the constrained and un-
constrained disparity measure, see Algorithm 1.

For the constrained problem, we solve the nonlinear
optimization problem:

Ẽ(x̃?
, s̃

?) = min
x̃,s̃

||x̃�↵ � s̃||�, (29)

where x̃ and s̃ have the element interfaces fixed.

The main function is OPTIMIZE. It takes several ar-
guments: ↵ gives information about the curve. Pa-
rameters p and q denote the polynomial degrees in
x and s, respectively. M is the number of outer itera-
tions corresponding to the log barrier term µ and N the
maximum nonlinear iterations allowed. In our exper-
iments, we use M=6 with µ decreasing by a factor of
10�2 at each step. The parameter optimizePartitions
indicates whether or not the initial element partition
should be optimized (using the original disparity with
p = q = 1). Finally, freeInterfaces is a flag indicating
if the element interfaces are fixed or not.

At the start (lines 2-5), we check if the CAD model has
already an initial tessellation. Otherwise, we create
an element partition. Then, if optimizePartitions is
activated, we set p = q = 1 and call again the function
optimize with the flag freeInterfaces activated (lines 6-
7). In this case, the same routine follows but changes
Ẽ (constrained) to E (original disparity). Next (line

Algorithm 1 constrained disparity minimization

1: function Optimize(↵, p, q, M, N, optimizeParti-
tion, freeInterfaces)

2: if ↵.tess = true then

3: r = ↵.tess

4: else

5: r = divide(↵, n)

6: if optimizePartition = true then

7: r, Optimize(↵, 1, 1, M, N, false, true)

8: x̃0, s̃0 Refine(↵, r, p, q)
9: µ = 0; logBarrier = false;

10: for m = 1 :M do

11: if m =M then

12: µ = 0
13: else

14: µ = µ · 10�2

15: for n=1:N do

16: rEn, H(En) GradHess(↵, xn, sn,
freeInterfaces, µk)

17: if |r(En)| < tol then

18: break

19: � = �H(En)
�1
rEn

20: if � ·rEn < 0 then

21: d = �
22: else

23: d = �
h
diag(H(En))

i�1
rEn

24: � = 1
25: repeat

26: (x̃n+1, s̃n+1) = (x̃n, s̃n) + �d
27: � = �/2
28: until ZhangHager(x̃n+1, s̃n+1) = true
29: if any(sign(s̃0n+1) 6= sign(s̃00)) then
30: (xn+1, sn+1) = (xn, sn)
31: µ = ||x̃n �↵ � s̃n||

2
�

32: logBarrier = true

33: break

34: if logBarrier = false then

35: break

36: return x̃n, s̃n

8), we generate the high-order interpolative meshes.
At each element, we set:

x̃(⇠) = x
0(⇠) +

pX

i=2

x̃iN
p
i (⇠), (30)

s̃(⇠) = s
0(⇠) +

qX

i=2

xiN
q
i (⇠), (31)

where x
0
, s

0 are fixed (free) when optimizing Ẽ (E).

We then initialize the log barrier variable (line 9) and
enter the optimization loops. The outer loop (starting
at line 10) corresponds to the penalized problem (equa-

18

tion (19)). The inner loop (lines 15-34) is the back-
tracking Newton scheme minimizing Ẽ(x̃?

, s̃
?). We

compute the gradient and Hessian (line 16) and check
the stopping criteria (lines 17-19). In our experiments,
it corresponds to tol = 10�12. Then, a descent direc-
tion is chosen (lines 19-23) and the solver enters a loop
until the line search condition is met (lines 25-28). Fi-
nally, we sample s

0 for any changes in its sign. If so,
we activate the log barrier (lines 29-32). The main
function returns the optimized pair (x̃n, s̃n).

4. EXPLOITING LOCAL HIGHER
ORDER ACCURACY

4.1 Constrained versus unconstrained op-
timization

Here we compare the convergence of the solution to the
target geometry for the constrained and unconstrained
optimization of the disparity. Then, we study the error
behaviour focusing on a single element and show that
it is possible to attain super-convergence optimizing
only the internal nodes.

In Figure 9, we show the point-wise errors of the orig-
inal (x?

, s
?) and constrained (x̃?

, s̃
?) optimization us-

ing the spiral from Section 3 as the target geometry
(Figure 6). The point-wise error |x̃?

�↵ � s̃?| is larger
than |x

?
�↵ � s?|. Also, unlike x

?, x̃? interpolates at
the element interfaces. We will see that despite having
larger errors, the constrained problem preserves the
super-convergent behavior from the original disparity.

|x
?
�↵ � s?|

|x̃
?
�↵ � s̃?|

|e
r
r
o
r
|

⇠

Figure 9: spatial error distribution showing element
interfaces (light blue) for the minimization arguments
(x?

, s
?) (solid green) and (x̃?

, s̃
?) (dashed deep blue)

of the original and constrained disparity, respectively.

Fixing element interfaces transforms the optimization
problem in R (total elements) independent copies.
This is illustrated in Figure 10 for a semi-circle succes-
sively split into 1,2 and 4 elements and the correspond-
ing errors after optimizing the constrained disparity.
Note that only the internal nodes are considered dur-
ing optimization, reducing the problem dimension.

In Figure 11, we show convergence plots for a circle
and a sphere arc for p = 2, 3, 4 and five mesh refine-
ments. For the 2D case, as for the original dispar-
ity, we attain 2p order. For the 3D case, we obtain
b
3
2 (p� 1)c+2 order. This means that the p = 2 leads

R=1

|x�↵ � s| |x̃
?
�↵ � s̃?|

R=2

R=4

Curves Point-wise errors

Figure 10: h-refinement (R=1,2, 4 elements) for
p = 2 meshes. Left: optimized curves x̃

? (solid deep
blue) and ↵ � s̃? (dashed green). Right: error curves
featuring roots (dots) and interface points (solid dots).

to the usual third order. However, the errors are lower
than those resulting from direct interpolation. Later,
when we look at the error over a single element, we dis-
cuss why we attain respectively, 2p and b 32 (p�1)c+2.

Now, we use as the target geometry the edges of a CAD
model. Figure 12 shows convergence plots for the top
edge. Although the disparity values with fixed inter-
faces are slightly larger, the order of accuracy is the
same as freeing interfaces and both cases significantly
improve the initial approximation. In Figure 13, we
show the point-wise errors after optimizing all edges
for p = 2, 3 and 20 elements per edge. Concerning the
initial approximation, both the constrained and orig-
inal optimization decrease the errors with the same
magnitude.

4.2 Planar curves: error profile for a single
element.

Here, we study the local behaviour of the optimizer
focusing on a single element. We use a semi-circle as
the target geometry to make the plots clearer.

In Figure 14, we show the point-wise error plots when
approximating a semi-circle with a single element for

19

2D curve: circle

CR=2p

||x̃
?
�↵ � s̃?||�

p=2

p=3

p=4

||
·
||
�

↵

3D curve: sphere arc

CR=b 3
2 (p�1)c+2

||x̃
?
�↵ � s̃?||�

p=2

p=3

p=4

||
·
||
�

↵

Figure 11: slopes (log-log) of the || · ||� norm for sev-
eral mesh refinements showing the convergence rates
(CR) for a 2D (top) and 3D (bottom) after optimizing
the constrained disparity (x̃?

, s̃
?).

||
·
||
�

p = 2

p = 3

p = 2

p = 3

||x�↵||�

||x̃
?
�↵ � s̃?||�

||x
?
�↵ � s?||�

Figure 12: slopes (log-log) of the || · ||� norm for
several mesh refinements for the top curve of the CAD
model (marked in blue) using direct interpolation (dot-
ted dark blue) vs. optimizing the constrained (solid
light blue) and the original (dashed green) disparities.

several polynomial degrees. The y-axis denotes the
magnitude of the error e = e(⇠) = |x(⇠) � ↵ � s(⇠)|.
The initial approximation (interpolation) is a polyno-
mial of degree p and the error curve has the expected
behaviour: p + 1 roots. The right plots show the re-
sults from both optimizations: fixed and free element
interfaces. Notice that although the fixing interfaces
produces slight larger errors, both solutions behave
similarly: the curves have 2p roots (instead of p+ 1).

CAD Edges: 6

Initial Opt. fix Opt. free

p = 2

|error|

p = 3

|error|

Figure 13: point-wise errors |x � ↵ � s| (top view)
approximating the edges of a CAD model with meshes
made of 20 elements and p = 2, 3, respectively. From
left to right: direct interpolation, optimizing the con-
strained (fix) and original disparities .

e e? ẽ?

p
=

2
p
=

3
p
=

4

Initial Optimized

Figure 14: point-wise error plots e = |x � ↵ � s|
approximating a semi-circle with a single element be-
fore (left) and after optimizing (right) the constrained
(solid deep blue, (x̃?

, s̃
?)) and the original disparity

(dashed light blue, (x?
, s

?)).

In Section 2 (Figure 2) we showed with a circle that the
point-wise errors align with the curve normal direction

20

after optimization. Now we will discuss how this can
be related to the disparity super-convergent property.
Denote {t,n} the curve tangent and normal vectors
respectively. For planar curves, we can decompose the
error e = x�↵ � s along these directions:

e = (e · t)t+ (e · n)n.

The parametric mesh s uses polynomials of degree q

so at each element, we have a total of q+ 1 degrees of
freedom. On the other hand, since our physical mesh
uses polynomials of degree p in R2, it has 2(p + 1)
degrees of freedom per element. Since our problem is
constrained (fixed interfaces) we have a total of q +
1� 2 + 2(p+ 1� 2) degrees of freedom (per element).
Hence, we can have (2p � 2) + (q � 1) equations that
will be optimizing the disparity.

During optimization, we impose zero tangent error
(weakly) in q� 1 equations. If we assume that solving
the nonlinear equations behaves similar to interpola-
tion, we would expect at least q + 1 roots in the error
function. Recall that the end-points are fixed, hence
why we go from q�1 to q+1. This is shown in Figure
12 for the q = 2p�1 case: the optimized tangent error
has 5 and 7 roots for p = 2, 3, respectively.

The 2p � 2 remaining equations are used to impose
the total error equal to zero. Assume we can make the
tangent error as small as desired by increasing q. At
the optimum, we can think of these 2p � 2 equations
essentially imposing zero normal error (weakly). With
the same reasoning as for s, we expect 2p roots along
the normal component. The +2 corresponds to the
interfaces which are interpolation points. This can be
appreciated in Figure 15 looking at the plots from the
optimized case. Also, provided q > 2p� 1, the normal
error dictates the overall accuracy. Note that in both
q = 2p� 1 and q = 10, the normal error is larger.

4.3 Discussion for 3D curves

We have just discussed the 2D case and how the opti-
mal error behaves in terms of the tangent and normal
component. We will now extend our results to the 3D
case. In this case, the error decomposition becomes:

e = (e · t)t+ (e · n)n+ (e · b)b, (32)

where e = x�↵�s and {t,n, b} are the curve tangent,
normal and binormal vectors, respectively. Our physi-
cal mesh uses polynomials of degree p in 3D space with
fixed end-points. So, at each element, we have 3(p�1)
degrees of freedom. As for the 2D case, we impose in
q � 1 equations zero tangent error (weakly). The rest
3(p� 1) equations impose total zero error (weakly).

As before, we assume that the tangent error decreases
as q increases. At the optimum, the combined solution

p = 2 p = 3

Initial

t
n

Optimal

q=2p�1

Optimal

q=10

Figure 15: tangent (t) and normal (n) error com-
ponents approximating a semi-circle with one element
before and after optimizing the internal nodes.

implies that we have 3(p� 1) equations imposing zero
along both the normal and binormal components. In
analogy with the 2D discussion, we now expect at least
b
3
2 (p�1)c interpolation points along each component:

{n, b}. Since end-points interpolate the curve, it gives
(b 32 (p� 1)c+ 2) roots per component.

In Figure 16, we show the error plots before and after
optimizing the constrained disparity approximating a
sphere arc with a single element. As for the 2D case, as
x̃ follows the image of ↵ � s̃, s̃ minimizes the tangent
error. Notice that when s is of degree q = 10, the
tangent error is negligible compared to the other two
components. Also, observe how we obtain both along
the normal and binormal directions: 5 = b 32 (3�1)c+2
roots for p = 3 and at least 6 = b 32 (4�1)c+2 for p = 4.

p = 3 p = 4

Initial

t
n
b

Optimal

q=10

Figure 16: tangent, normal and binormal {t,n, b}
errors approximating a sphere arc with one element
before and after minimizing the constrained disparity.

21

4.4 Mesh initialization

Here, we focus on the element partition. In Figure 17
(top), we show a p = 2 mesh approximating a spline-
based NACA curve with ESP [12] using direct interpo-
lation. In this case, the elements are equi-distributed
along the curve parametric space. Notice that the
leading edge is poorly resolved. We can improve the
element partition optimizing the original disparity us-
ing p = q = 1 meshes. Then, we save the partition in
s
? and p-refine both meshes: s and x. The result is
shown at the bottom images from Figure 17. Notice
that now the leading edge is well approximated. Alter-
natively, we could have obtained the initial partition
performing an arc-length based optimization [16].

In Figure 18, we study the accuracy of the initial
meshes (before optimization) for p = 1, 2, 3 when ap-
proximating the NACA curve. We compare sampling
directly along the parametric space (s1 equi-par) with
the pre-processing step: optimizing the linear meshes
(s1 opt. all). Notice that the errors significantly im-
prove for the latter one. We also show the case where
only the coarser mesh is optimized (s1 opt. first).
Then, the finer meshes are obtained splitting directly
each element in two. In this case, the errors are compa-
rable to optimizing at every refinement. This approach
can be used to save computational time.

Equi-parametric elements

Leading

edge:

Optimized element sizes

Leading

edge:

Figure 17: interpolating a NACA curve with 10 el-
ements (p = 2) using an equi-parametric distribution
(top) vs. the proposed pre-processing step (bottom).

5. NUMERICAL RESULTS

Here, we perform several numerical experiments for
the solver performance in terms of the number of it-
erations. We start studying the impact of the line
search choice. Finally, we discuss the trade-o↵s be-
tween errors and iterations comparing the constrained
disparity to the original formulation.

Elements

||
x
�

↵
�
s
||

s1 equi-par

s1 opt. first

s1 opt. all

Figure 18: log-log error plots of the initial meshes
approximating a NACA curve for several refinements
comparing equi-parametric elements (dotted lines) to
optimizing only the coarser mesh (dashed lines) and
optimizing at every h-refinement (solid lines).

5.1 Zhang-Hager vs. Armijo line search

Here, we compare the performance between Armijo
and the average line search. In Figure 19, we show the
error contours for a CAD body to highlight that both
Armijo and Zhang search produce exactly the same so-
lution. In Figure 20, we compare iterations for three
di↵erent curves and polynomial degrees. Looking at
the number of nonlinear iterations, Zhang-Hager line
search is systematically faster than Armijo. On aver-
age, it is 76% faster (in terms of iterations).

Body Initial

Armijo Zhang

|error|

Figure 19: point-wise errors (top view) at the six
edges of a CAD body before and after optimizing the
original disparity using Armijo vs. Zhang-Hager rule.
Each edge consists of eight p = 2 elements.

5.2 Constrained optimization: errors vs.
iterations

Here, we focus on more complex bodies made of sev-
eral surfaces and study the trade-o↵s from fixing the
interfaces. We omit straight edges since they can be
represented exactly with linear elements and set a stop
criterion of |r(E)| < 10�12.

In Figure 21, we show a CAD model made of 54 edges
out of which 36 are curved. We use meshes consist-

22

p = 2

p = 3

p = 4

Armijo Zhang
E
le
m
en
ts

Iterations (log scale)

Figure 20: Armijo vs. Zhang line searches optimiz-
ing curves (analytic and CAD) for degrees p = 2, 3, 4.
The % in the bars indicate relative lesser iterations.

ing of p = 3, q = 9 elements and compare the results
from computing the constrained and original dispar-
ities. The optimal pair (x?

, s
?) (free interfaces) pro-

duces lower errors, although in some cases, the con-
strained solution (x̃?

, s̃
?) leads to a lower disparity

value. This is because, in that case, the optimization
of the original disparity converged to a local minimum
with a higher disparity value. Optimizing the disparity
with fixed interfaces took a maximum of 23 iterations
whereas the unconstrained problem took a maximum
of 808. On average, the constrained problem converges
in 9 iterations, and the original in 167.

Finally, in Figure 22 we present an aircraft model con-
sisting of 102 faces and 238 edges. Since the model is
symmetric, we study only its left half. This gives 51
curves that we approximate with p = 2 meshes. In
this case, optimizing the constrained disparity took
a maximum of 43 iterations whereas optimizing the
original disparity went, in many cases, beyond 500 it-
erations. In both cases, we have used the Zhang-Hager
line search. On average, the constrained problem takes
4 iterations to converge compared to 387 taken by the
unconstrained problem, becoming 87% faster.

6. CONCLUSIONS

We have developed a robust solver designed to min-
imize the disparity measure. We have introduced a
log barrier penalty term to avoid curve tangling. The
Zhang-Hager average line search is less restrictive, pro-
ducing the same results as the Armijo rule in signif-
icantly fewer iterations. On average, it reduces the
number of iterations by 76%.

The original disparity (free interfaces) gives optimal
errors. On the other hand, the constrained dispar-

CAD Model Model Edges

||x
�

↵
�
s
||

Edges

Initial

Opt. free

Opt. fix

I
t
e
r
a
t
io
n
s

Opt. free

Opt. fix

Edges

Figure 21: fix vs. free interfaces optimization for
p = 3 meshes approximating all the curved edges of a
CAD model. Total elements: 560.

ity (fixed interfaces) is sub-optimal in terms of the
error but still yields super-convergence. We have nu-
merically shown how both disparities are 2p super-
convergent for 2D curves and b 32 (p�1)c+2 for curves
in 3D space.

Initially, solving the original disparity with the Armijo
rule took, on average, around 2000 nonlinear itera-
tions. Our experiments for fixed element interfaces
show that optimizing the disparity with the Zhang-
Hager line-search, produces a residual less than 10�12

in less than 10 iterations. This corresponds to a re-
duction factor of 100 when compared to the original
optimization of the problem. In the future, we will
extend this methodology to surface mesh generation.

7. ACKNOWLEDGEMENTS

This project has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation
programme under the Marie Sk lodowska-Curie grant
agreement No 893378 as well as the European Re-
search Council (ERC) grant agreement No 715546.

23

CAD Model

Model Edges

||x
�

↵
�
s
||

Edges

Initial

Opt. free

Opt. fix

I
t
e
r
a
t
io
n
s

Opt. free

Opt. fix

Edges

Figure 22: fix vs. free element interfaces optimiza-
tion for p = 2 meshes approximating all the curved
edges of an aircraft model. Total elements: 1375.

References

[1] Slotnick J.P., Khodadoust A., Alonso J., Darmo-
fal D., Gropp W., Lurie E., Mavriplis D.J. “CFD
vision 2030 study: a path to revolutionary com-
putational aerosciences.” Tech. Rep. NASA/CR-
2014-218178, 2014

[2] Alt H., Godau M. “Computing the Fréchet dis-
tance between two polygonal curves.” Int. J.

Comput. Geom. Appl., vol. 5, 75–91, 1995

[3] Remacle J., Lambrechts J., Geuzaine C.,
Toulorge T. “Optimizing the geometrical accu-
racy of 2D curvilinear meshes.” Procedia Eng.,
vol. 82, 228–239, 2014. 23rd International Mesh-
ing Roundtable

[4] Toulorge T., Lambrechts J., Remacle J.F. “Op-
timizing the geometrical accuracy of curvilinear
meshes.” Journal of Computational Physics, vol.
310, 361–380, 2016

[5] Ruiz-Girons E., Sarrate J., Roca X. “Defin-
ing an L2-disparity measure to check and im-
prove the geometric accuracy of non-interpolating
curved high-order meshes.” Procedia Eng., vol.
124, 122–134, 2015. 24th International Meshing
Roundtable

[6] Ruiz-Girons E., Sarrate J., Roca X. “Generation
of curved high-order meshes with optimal qual-
ity and geometric accuracy.” Procedia Eng., vol.
163, 315–327, 2016. 25th International Meshing
Roundtable

[7] Ruiz-Girons E., Sarrate J., Roca X. “Measuring
and improving the geometric accuracy of piece-
wise polynomial boundary meshes.” J. Comput.

Phys.on, vol. 443, 110500, 2021

[8] Dai Y.H. “On the nonmonotone line search.”
Journal of Optimization Theory and Applica-

tions, vol. 112, no. 2, 315–330, 2002

[9] Grippo L., Lampariello F., Lucidi S. “A non-
monotone line search technique for Newtons
method.” SIAM Journal on Numerical Analysis,
vol. 23, no. 4, 707–716, 1986

[10] Zhang H., Hager W.W. “A nonmonotone line
search technique and its application to uncon-
strained optimization.” SIAM Journal on Opti-

mization, vol. 14, no. 4, 1043–1056, 2004

[11] Toint P.L. “An Assessment of nonmonotone
linesearch techniques for unconstrained optimiza-
tion.” SIAM Journal on Scientific Computing,
vol. 17, no. 3, 725–739, 1996

[12] Haimes R., Dannenho↵er J. “The engineer-
ing sketch pad: A solid-modeling, feature-based,
web-enabled system for building parametric ge-
ometry.” Sep. 2013. 21st AIAA Computational
Fluid Dynamics Conference

[13] Garimella R.V., Shashkov M.J., Knupp P.M.
“Triangular and quadrilateral surface mesh qual-
ity optimization using local parametrization.”
Computer Methods in Applied Mechanics and En-

gineering, vol. 193, no. 9, 913–928, 2004

[14] Dobrev V., Knupp P., Kolev T., Mittal K., Tomov
V. “The Target-Matrix Optimization Paradigm
for High-Order Meshes.” SIAM Journal on Sci-

entific Computing, vol. 41, no. 1, B50–B68, 2019

[15] Nocedal J., Wright S. Numerical Optimization.
Springer Science & Business Media, 2006

[16] McLaurin D., Shontz S.M. “Automated edge grid
generation based on arc-length optimization.”
Proceedings of the 22nd International Meshing

Roundtable, pp. 385–403. Springer International
Publishing, 2014

24

