
MULTIMAT: AN API FOR MANAGING MULTIMATERIAL

SIMULATION DATA

Raine Yeh1 Kenneth Weiss2 Arlie Capps2 Xavier Tricoche3

1Purdue University, West Lafayette, IN, U.S.A.
now at: Google, New York, NY, U.S.A. raineyeh@google.com

2Lawrence Livermore National Laboratory, Livermore, CA, U.S.A. {kweiss,capps2}@llnl.gov
3Purdue University, West Lafayette, IN, U.S.A. xmt@purdue.edu

ABSTRACT

Multimaterial simulation codes model the flow of materials with di↵ering physical properties over a computational
domain. Due to the intrinsically complicated access and traversal patterns on the underlying material-based field
data defined over its mesh cells, such codes require implementations to strike a careful balance between competing
demands of usability and performance. For a successful multimaterial simulation code, the designs of space e�-
cient data structures, performant implementations, and flexible, developer-friendly representations that can adapt to
varying traversal patterns and computer architectures must all satisfy this balance. Towards this aim, we introduce
MultiMat, an open source library designed for e�cient interaction with multimaterial mesh data and clear, flexible
expression of multimaterial algorithms. MultiMat provides an intuitive API for operating on multimaterial data,
several concrete data structures for representing this data, and functions to easily convert between di↵erent repre-
sentations. We include code-to-code comparisons against explicit implementations of several representative physics
kernels. Our results indicate that MultiMat simplifies data access and increases code readability while achieving
comparable performance.

Keywords: multimaterial simulations, mesh data structures, sparse encodings.

1. INTRODUCTION

Multimaterial problems are commonly used to model
the flow of materials with di↵ering physical properties
through a problem domain, for example in computa-
tional fluid dynamics (CFD) and hydrodynamics [1, 2].
Typically, the domain is discretized into geometric
cells and the materials within a cell are represented
in terms of volume fractions indicating the percentage
of the cell’s volume occupied by each material [3].

Multiphysics problems, such as those modeling high
energy density physics, can easily require tens of ma-
terials that are unevenly distributed over a problem
domain discretized by millions of cells. Examples in-
clude modeling instabilities induced by laser-driven
shocks [4] and Inertial Confinement Fusion (ICF)

problems where we must also represent fields associ-
ated with di↵erent isotopes of each material [5].

The codes that simulate these problems can be large,
ranging to hundreds of thousands or millions of lines of
code. Due to the large investment of development and
validation, these codes can be in active development
and use for decades.

Operations on multimaterial mesh data typically oc-
cur within tight performance-critical loops, so consid-
erable e↵ort has gone into developing e�cient data
representations and layouts for operating on this data.
But e�ciency in laying out data is not the only con-
cern. There are several tradeo↵s that must be con-
sidered when developing representations to support
performant multimaterial kernels within large multi-
physics codes:

277

Data layout. Kernels within multiphysics codes can
have vastly di↵erent data access patterns. For exam-
ple, kernels that depend on local properties of a cell
might benefit from a cell-dominant layout, with an
outer loop that traverses the cells of the mesh and an
inner loop traverses the cell’s materials. In contrast,
kernels that require expensive material-based lookups,
such as for the material’s equation of state (EOS), can
benefit from a material-dominant layout, where the
lookups can be performed once per material and the
costs can be amortized over all cells containing that
material. Further, simulations may need to run on
machines with drastically di↵ering computer architec-
tures whose performance characteristics might warrant
competing data layouts.

Data transformations. Multiphysics codes often
depend on functionality from external libraries. In-
terfacing with such libraries can require transform-
ing simulation data to another representation. Such
transformations involve complex bookkeeping and are
a common source of error. They can involve hundreds
of lines of code, are rarely well-tested and can be dif-
ficult to modify, such as when new features are added
to the code.

Sparsity and dynamic updates. A problem can
be defined by many materials, but each cell of the
mesh typically only contains a few materials. Several
data representations have been proposed in the litera-
ture. The simplest storage scheme holds variables for
all combinations of every material in each cell and sets
the volume fraction to zero for materials that are not
present in a cell. We refer to this as the full matrix lay-
out, or full layout. This straightforward scheme pro-
vides fast access and easy modification. However, this
comes at the cost of ine�cient usage of space, which
can limit the types of problems that a code can run,
especially on memory-limited computing architectures
such as GPUs. In contrast, compact layouts store state
variables for a material only when it is present in a cell.
This is typically implemented using extra indexing in-
formation to keep track of which materials are present
in each cell. Compared to full matrix layout, com-
pact representations can greatly reduce storage needs
and calculation times, but data access is less straight-
forward due to the extra index indirection. Compact
data can also be more di�cult to dynamically update,
such as when adding or removing a material from a
cell.

Developer productivity and debugging. In an
e↵ort to achieve the greatest possible performance or
to quickly add new capabilities, codes often use ex-
plicit (native) indexing into multimaterial fields, di-
rectly exposing programmers to details of the under-
lying data representation. Within small applications,
native indexing does not typically impose an undue

burden on developers. But in larger codes, the prac-
tice can have several drawbacks. Most prominently,
bookkeeping errors, such as incorrect loop bounds, can
be very di�cult to track down when using native in-
dexing. Native implementations can also increase the
di�culty of developing new algorithms because devel-
opers must be intimately aware of the intricacies of the
underlying data structures. In such cases, it is not un-
common for developers to bootstrap their development
by copying code from similar kernels, which can lead
to further bookkeeping issues [6]. Native implementa-
tions can also make it di�cult to modify the underly-
ing data structures since consistent changes must be
made throughout the codebase. Manually switching
between the data layouts to comply with di↵erent al-
gorithmic data access pattern can be another source of
errors. Developers recognize this and can be reluctant
to work on code that uses extensive native indexing.

In summary, a flexible layout is critical for e�cient
data management in a codebase that must adapt to
di↵erent layout patterns while staying memory e�-
cient. As pointed out by Fogerty et al. [7, 8], there
can be no single optimal choice of layout or sparsity
for all situations. The best choice of data structure can
vary between applications, between specific problems,
and even within di↵erent sections of the code. This
situation calls for an abstraction of the data storage
structure. And, since multimaterial indexing is used
heavily within tight inner loops, the design of an extra
abstraction layer requires care to avoid performance
overhead. The additional function calls and runtime
checks necessary to support polymorphic behavior can
impose an unwelcome penalty.

1.1 Contribution

In this paper, we propose MultiMat, a clean,
lightweight API to access, transform and modify mul-
timaterial data. MultiMat was developed with perfor-
mance requirements in mind and provides transparent
support for several important data layouts while hid-
ing obscure implementation details behind a simple
user interface.

It is important to note that the underlying represen-
tations used by multimaterial simulations codes (and
abstracted by MultiMat) contain the same core ingre-
dients as those in numerical processing and linear al-
gebra libraries such as Eigen [9] and Armadillo [10].
As such, extremely e�cient implementations of data
structures for dense and sparse matrices are widely
utilized across numerous fields. However, managing
multimaterial field data is outside the design scope of
such libraries. In particular, it is rare for collections
of sparse matrices within a linear algebra libraries to
share indexing data.

278

Alternatively, since material-based fields within a mul-
timaterial simulation share the same indexing data,
their computational kernels typically operate on sev-
eral fields using the same indexing data. Further-
more, changes to the material distribution within these
meshes, such as during remeshing, load balancing or
mesh refinement requires careful coordination among
all associated material-based fields.

The main contribution of this work lies in providing
a performant, intuitive abstraction for accessing and
operating on multimaterial mesh data. This lets appli-
cation developers and code physicists focus not on the
details of data structures and bookkeeping, but rather
on the underlying physics in their application, with-
out sacrificing performance. In this paper, we com-
pare the performance of our API against native imple-
mentations. For a comprehensive comparison between
the performance di↵erences that can be obtained on
the same kernel using di↵erent layouts and represen-
tations, see Fogerty et al. [7].

We review some basic terminology and data structures
in Section 2 and describe our library design and API
in Section 3. In Section 4, we evaluate MultiMat by
comparing code and performance against native imple-
mentations. We conclude in Section 5 with a discus-
sion of our results and an outline for future directions.

2. DATA STRUCTURE BACKGROUND

In this section, we describe several data structures that
underlie MultiMat and introduce concepts and termi-
nology used in the rest of this paper. We illustrate
our discussion with a running example of a multima-
terial mesh of four cells and three materials, shown in
Figure 1a. The shaded regions in the figure represent
material regions occupying the mesh cells. For exam-
ple, cell 1 contains only a single material and cell 2
contains all three materials. Following the Volume of
Fluid (VOF) framework [3], the mesh cells implicitly
encode the material interfaces through volume frac-
tions, encoding the percentages of each cell’s volume
occupied by each material. Note that while we are
demonstrating only a 2D mesh, MultiMat works identi-
cally with 3D meshes since it encodes fields as indexed
arrays.

Multimaterial meshes contain fields that describe the
simulation’s state variables, such as volume, temper-
ature, and pressure. Depending on the attribute in
question, a field can map to each cell, to each mate-
rial, or to specific materials within each cell. For exam-
ple, fields for “cell volume” or “number of neighboring
cells” might be per-cell variables, as there is one value
stored for each cell, whereas “material density” would
be a per-material variable. For the mesh in Figure 1a,
a per-cell field would need to store four variables, while

a per-material field would need to store three. We re-
fer to these as 1D fields. Using a 1D field is fairly
straightforward. The field values are stored in a con-
tiguous array that is directly indexed (e.g. field[i]

accesses the value associated with index i).

In contrast, we refer to fields that associate values with
materials within a cell as 2D fields. “Volume frac-
tion” is an example of a 2D field since it is defined for
each material of a mesh’s cell. Returning to Figure 1a,
cell 1 would have a single non-zero volume fraction (for
material B), while cell 2 would have three associated
volume fractions (i.e. for materials A, B, and C).

Since we are dealing with the Cartesian product of ma-
terials and cells, it is convenient to conceptualize 2D
fields as matrices, whose rows and columns correspond
to materials and cells. Entries are uniquely identified
by a material ID and a cell ID, which are equivalent to
row and column indices in a matrix. Note that layout
dimension is distinct from the spatial dimension of the
simulation mesh.

Data structures for 2D fields allow for more optimiza-
tion opportunities along with greater complexity. In
the remainder of this section, we will discuss the full
matrix data structure, followed by compact alterna-
tives that can reduce storage costs.

2.1 Full Matrix Layout

The simplest way to store a 2D field is the full matrix
layout, or full layout, where every material in the prob-
lem has an entry for each cell of the mesh. In this case,
the absence of a material from a cell can be inferred
when its corresponding volume fraction is zero.

The data in a full matrix layout can be organized in
one of two ways: A multimaterial data structure is cell-
dominant if it is organized as a list of cells composed of
varying sets of materials, and material-dominant if it
is organized by the materials. Figure 1b shows our ex-
ample mesh in a cell-dominant full matrix layout while
Figure 1c shows the same mesh in a material-dominant
full matrix layout. We use the row-major convention
in this paper, where consecutive entries of a row reside
next to each other. For a cell-dominant layout, we
call the cell ID the outer-index, and the material ID
the inner-index. Similarly, a material-dominant layout
would consider the material ID as the outer-index, and
the cell ID as the inner-index.

Since the full 2D matrix uses a contiguous array to
store these fields, the actual array data is accessed with
a single index, which we refer to as a flat-index. Fig. 2
shows the flat-index for our example mesh in relation
to its cell and material IDs. Accessing a state variable
for cell c and material m is done by calculating the flat-
index as field[c * nM + m] for a cell-dominant lay-

279

cell 1

cell 3

cell 2

cell 4
(a) Example mesh

Ce
lls

1 - 1B -

2 2A 2B 2C

3 - 3B 3C

4 4A - 4C

A B C
Materials

Cell-Dominant Full
Layout

(b) Full cell-dominant layout

M
at
er
ia
ls A - 2A - 4A

B 1B 2B 3B -

C - 2C 3C 4C

1 2 3 4
Cells

Material-Dominant
Full Layout

(c) Full material-dominant layout

1B 2A 2B 2C 3B 3C 4A 4C

0 1 2 3 4 5 6 7Flat-index

Cell-Dominant Compact Layout

(d) Compact cell-dominant layout

2A 4A 1B 2B 3B 2C 3C 4C

0 1 2 3 4 5 6 7

Material-Dominant Compact Layout

Flat-index

(e) Compact material-dominant layout

Figure 1: An example mesh with four cells and three materials (a) along with several cell-dominant (b,d) and
material-dominant (c,e) layouts. Full layouts (b,c) have storage for all materials and cells, while compact layouts
(d,e) reorganize the data into a 1D array.

C
el

l i
nd

ex

0 0 1 2

1 3 4 5

2 6 7 8

3 9 10 11

0 1 2
Material index

Flat-index

Figure 2: Flat-index for a cell-dominant full matrix
layout of the example mesh.

out, or field[m * nC + c] for a material-dominant
layout. In both cases, the storage space used is the
same: A 2D field with nC cells and nM materials will
use an array of size nC * nM in full matrix layout.

The full matrix layout provides a simple storage
scheme and straightforward access to state variables
at the cost of ine�cient usage of storage space due
to explicitly storing state variables for materials that
are not present in a cell. The extra storage usage is
especially excessive in simulations with many materi-
als but low material mixture, where most cells contain
only a few materials, e↵ectively making the 2D field a
sparse matrix.

2.2 Compact Layout

One can improve on the storage space used by the full
matrix layout by omitting the zeroed entries. We refer
to this as a compact layout, which stores a field vari-
able for a material only when it is actually present in
the cell (i.e. its volume fraction is non-zero). Figure 1d
shows our example mesh in compact cell-dominant lay-
out, where only the non-zero values are stored, and
Figure 1e shows the material-dominant equivalent. In
addition to storing the values, a compact layout must
keep track of additional index information in order to
reconstruct the equivalent full matrix data.

There have been many compact storage schemes de-
veloped by the scientific computing community for en-
coding sparse matrices [11]. MultiMat uses the com-
pressed sparse row (CSR) layout for our compact lay-
out. This is a common representation in linear algebra
libraries [9, 10]. as well as in mesh processing, where it
can be used to compactly encode topological connec-
tivity relations [12, 13] and for e�cient spatial index-
ing [14, 15], among numerous other applications [16].

To store a 2D field with M rows and N columns, CSR
uses three (one-dimensional) arrays, A, IA, and JA. The
first array A stores the non-zero values, and has length
nnz, the number of non-zeros in the field. The sec-
ond array IA is of length M+1 and contains the o↵sets
into A of the first element from each row. The first
M elements of IA store the index into A of the first
nonzero element in each row, while the last element

280

2A 4A 1B 2B 3B 2C 3C 4C

0 1 2 3 4 5 6 7

A: non-zero values

0 2 5 8IA: extent of row

1 3 0 1 2 1 2 3JA: column index

Flat-index

Figure 3: Compact material-dominant layout of the
example mesh, stored in the CSR format.

IA[M] stores the value nnz, which is also the number
of elements in A. If a row i has no elements, IA[i]
stores the same value as IA[i-1]. The values of the
i
th row of the original matrix can be found in entries
A[IA[i]] to A[IA[i+1]-1]. The third array, JA, con-
tains the column index of each element of A, and hence
is of length nnz as well.

Figure 3 shows the CSR layout for our example mesh
in compact material-dominant layout (see Figure 1e).
In this example, array A stores the field values, array
JA stores the cell ID associated with each of the field
values in A and array IA stores the flat-index of the
first field value of each material, with the last entry
storing the size of the A array.

The cell-dominant version of the CSR layout is the
transpose of the material-dominant version. The sizes
of A and JA do not change, whereas the size of IA is
now one more than the number of cells, rather than
the number of materials. The CSR layout uses 2*nnz
+ nr + 1 storage space and is more compact than the
full matrix when (2*nnz + nr + 1) < M*N.

We note that, in contrast to typical sparse matrix rep-
resentations, multimaterial fields can reuse the index-
ing arrays for multiple fields. Specifically, if we already
have at least one compact 2D field in our multimate-
rial state, the overhead associated with adding a new
field is only a single array of size nnz rather than an
entire new sparse matrix.

The CSR format allows fast row access and more ef-
ficient space usage by not storing the zeros explicitly.
However, accessing an element requires a level of indi-
rection since we must find the index of the data before
actually accessing the data. Additionally, dynamic
modification (adding or removing an entry) requires
extra operations and bookkeeping.

We conclude this section with some additional index-
ing terminology. We refer to a single row of a 2D
field as a subfield. For example, a subfield in a cell-
dominant field contains all data associated with the
materials in a specific cell. A subindex is a zero-based
index into a subfield. This is equivalent to the column
index for the full matrix representation, but can be
di↵erent in compact layouts.

3. MULTIMAT API

We followed several guiding principles in the design of
our multimaterial data management library:

One interface to rule them all. MultiMat should
be a unified API for many di↵erent data layouts
and representations. Layout changes should re-
quire minimal changes to user code.

Intuitive methods. Our API should be easy to use
and understand. Function calls should have intu-
itive names to make their semantics clear. Users
should not be required to be aware of the under-
lying data structures to use our API.

Versatility. Our API should be general enough to op-
erate with di↵erent data layouts. The API should
also provide access methods to let users exploit
specific underlying data layouts for e�ciency.

Covers most needs. Our API should allow for a va-
riety of computational use cases that may arise.
It should provide e�cient traversal of the data as
well as random access capability for algorithms
with that need (when supported by the underly-
ing representation). When all else fails, provide
a means for users to retrieve their data.

Robust error checking. All internal structures
should provide functions to check their internal
validity, such as that pointers are not nullptr

and that indexes are in-bounds.

E�cient. When used correctly, there should be negli-
gible overhead cost to use our API in comparison
to explicitly programming against the underlying
data structure.

MultiMat is a C++ library for managing multimaterial
data. It stores some metadata about the problem (e.g.
number of cells and materials) as well as fields for the
state variables pertinent to the simulation. Each field
is stored as a C++ object that records the field mapping
(to mesh entities or materials) and the data type of the
field (e.g. double, int).

We will now discuss the specific API our library uses,
and give a few usage examples for each method. For
simplicity, we assume the data type of the fields to be
double floating point (double in C++). Because our
library is templated on the data type, the actual data
can be any primitive or user defined data type.

Field access using operator(), as shown in the fol-
lowing subsections, can retrieve a value, a reference,
or a const reference. Brackets indicate optional use of
const or &.

281

3.1 1D Field

Using MultiMat, access to per-cell or per-material 1D
fields is straightforward since the data is stored in a
contiguous array. Given an index into the array, its
memory location can be calculated and accessed in
constant time using the C++ parenthesis operator. The
API to access the data in field field at index idx is:

double [const][&] val = field(idx);

A typical traversal can be done by incrementing an
index in a for-loop. For example to compute the total
volume from the 1D Volume field:

double totalVolume = 0;

for (int c = 0; c < ncells; ++c)

totalVolume += Volume(c);

3.2 Direct Access with findValue()

For 2D fields that are mapped to each material in each
cell, each entry of the field is indexed by a material ID
and a cell ID. We provide the general findValue()
function to query a full or compact 2D field, using an
arbitrary cell ID and material ID:

double* val = field2D.findValue(cellId, matId);

This function returns a nullptr when cell cellId does
not contain material matId.

We note that compact layouts do not provide O(1)
random access to the data, so each such call may in-
cur a search for the specific entry. This API is there-
fore often not the most e�cient way to access variables
sequentially, but can be used when the application re-
quires this or when performance is not a concern.

Below is an example snippet using findValue to cal-
culate the total volume of each material using 2D
VolFrac field, which contains the material volume
fractions, and 1D Volume field, which contains the per-
cell volume.

double* MatVol = new double[nmats];

for (int c = 0; c < ncells; ++c)

{

for (int m = 0; m < nmats; ++m)

{

double* val = VolFrac.findValue(c,m);

if (val)

MatVol[m] += *val * Volume(c);

}

}

3.3 Row Access with Subfields

In many cases, instead of random access by material
and cell ID, the user wants to traverse all the variables

in a field sequentially. MultiMat provides several API
options for e�cient traversals in both full and compact
layouts. Given a cell-dominant 2D field, a user can call

auto subfield = field2D(cellId);

to acquire the subfield associated with the materials
contained in cell cellId. The user can then access this
subfield as if it were a 1D field:

double [const][&] val = subfield(k);

where subindex k is an index into the subfield.

In a full matrix layout, k would be equivalent to the
material ID. Users will have to check if individual
VolFrac subfield entry is nonzero to see if a material is
present in a cell. In the compact layout scenario, only
the materials present in a cell would have their vari-
ables stored. The number of cells in a subfield is the
same as the number of materials present in the cell.
One can retrieve the material index with a matId()

call:

int matId = subfield.matId(k);

Similarly, use cellId() to retrieve the cell ID:

int cellId = subfield.cellId(k);

although it would be redundant as the subfield is ac-
quired using an existing cell ID.

Below is an example of code to calculate MatVol, the
total volume of each material, using VolFrac field,
which contains the material volume fractions, and
Volume, which contains the per-cell volume:

double* MatVol = new double[nmats];

for (int c = 0; c < ncells; ++c)

{

auto subField = VolFrac(c); //#1

for (int k = 0; k < subField.size(); ++k) //#2

{

int m = subField.matId(k); //#3

MatVol[m] += subField(k) * Volume(c); //#4

}

}

There is a lot to unpack in this snippet. We first access
the subfield associated with each cell in the outer loop
(#1). We use the subfield’s size() function as the
inner loop bounds (#2) and, for each subindex k in the
inner loop, we use the matId() (#3) and value (via the
parenthesis operator) to update the material-based 1D
field (#4).

This code snippet works for both full and compact
layouts. For the material-dominant version, the sub-
field is indexed by material ID, and contains variables
associated with all the cells that contain the specific
material

282

Cell-dominant & Full

Material-dominant
& Full

Cell-dominant & Compact

Material-dominant & Compact

2A 4A
1B 2B 3B

2C 3C 4C

1B
2A 2B 2C

3B 3C
4A 4C

2A 4A 1B 2B 3B 2C 3C 4C

1B 2A 2B 2C 3B 3C 4A 4C

Figure 4: One-step conversion between layouts

auto subfield = matDomField(matId);

auto value = subfield(k); //for some index k

Similarly, the cell ID of an entry in the subfield can be
retrieved with a cellId() call.

int cellId = subfield.cellId(k);

In the above example, layout-independent calls
cellId() and matId() are used to retrieve the cell and
material ID, which are equivalent to the row/column
index of an entry, depending on the layout used. To
retrieve the column and row index irrespective of the
layout that is in-use, user can call innerIndex() for
the column index in a subfield (equivalent to retriev-
ing a material ID for a cell-dominant subfield entry),
or outerIndex() for the row index (equivalent to re-
trieving the cell ID in a cell-dominant entry).

//cell-dominant layout only

int colIdx = subfield.matId(k);

//any layout

int colIdxAgain = subfield.innerIndex(k);

3.4 Iterator Access

We have also provided data access and traversal
through STL-compliant iterators. This can be espe-
cially useful for representations that do not support
random access traversals within a subfield as in the
array-based linked list data structure used by the Silo
I/O library [17], and implemented as the core cell-
dominant compact layout in several multiphysics codes
(see [7, 8] for more details).

Users can call function begin() for an iterator at the
start of the field, traverse the data one-by-one by
incrementing the iterator with iter++, and acquire
the value of the field by dereferencing with *iter.
Similar to a subfield, users can call utility functions
cellId() to get the cell ID, and matId() to get the

material ID. Alternatively, users can access the col-
umn and row indices by calling iter.outerIndex()

and iter.innerIndex(), respectively. Using the same
convention as described in the Subfield section, for
a cell-dominant 2D field, iter.outerIndex() returns
the cell ID, and iter.innerIndex() returns the mate-
rial ID. And vice versa for a material-dominant field.

We provide a 1-level iterator that traverses both 1D
and 2D fields from start to finish. The following is a
(not particularly e�cient) cell-dominant example:

double* MatVol = new double[nmats];

auto iter = VolFrac.begin(); // 1-level

while(iter != VolFrac.end())

{

int cellId = iter.cellId ();

int matId = iter.matId ();

MatVol[matId] += *iter * Volume(cellId);

++iter;

}

It can often be more e�cient to have a nested loop,
for example, when we have computations on the outer
loop. In this case, subfield iterators can be used by
passing the outer loop index to the 2D field’s begin()
and end() functions, and the inner index can be ac-
quired with the index() function:

double* MatVol = new double[nmats];

for (int c = 0; c < ncells; c++)

{

auto iter = VolFrac.begin(c); // subfield c

while(iter != VolFrac.end(c))

{

int matId = iter.index();

MatVol[matId] += *iter * Volume(c);

++iter;

}

}

Either iterator style can be used for both full and com-
pact layouts.

3.5 Converting Between Layouts

Currently our library supports full matrix layout and
CSR for compact layout, as well as cell-dominant and
material-dominant layouts. To simplify data manage-
ment, users can convert all fields between the di↵erent
layouts with a single function call:

convertToFullLayout()

convertToCompactLayout()

convertToCellDominant()

convertToMaterialDominant()

or individual layouts by specifying the field index:

convertFieldToFullLayout(fieldIdx)

convertFieldToCompactLayout(fieldIdx)

convertFieldToCellDominant(fieldIdx)

convertFieldToMaterialDominant(fieldIdx)

283

A user can query the current data layout by calling

getLayoutSparsity()

to check if the current layouts of all fields are full or
compact, and

getLayoutOrdering()

to check if the current layouts are cell- or material-
dominant. To query the layout of individual fields,
the user can call field-specific functions with a field
index:

getFieldLayoutSparsity(fieldIdx)

getFieldLayoutOrdering(fieldIdx)

Figure 4 shows the possible conversions between the
di↵erent layouts.

Our current implementation stores each field in only
one layout at a give time. In the future we plan to
support multiple concurrent layouts for a given field,
as this may benefit some algorithms.

3.6 Dynamic Access

Multiphysics simulations often have well-defined
phases where the material decomposition within cells
is static, and phases where dynamic changes can occur,
for example materials can advect through cells during
the remap stage of an ALE (Arbitrary Lagrangian-
Eulerian) simulation [2]. In a full matrix layout, it is
trivial to add or remove a material from a cell simply
by writing to the location of the entry specific to that
material and cell. In contrast, for a compact layout,
it is non-trivial to add an entry in the data array or
remove an existing entry while keeping good perfor-
mance.

Using our library, a user can convert data from static
to dynamic layout with

dynamicMode()

To add a new material to a cell and set a value in a
2D field, the user can call:

multiMatObj.addEntry(cellId , matId); //add entry

field2D(cellId)(matId) = new_value; //set value

Similarly, to remove a material from a cell:

multiMatObj.removeEntry(cellId , matId);

When the dynamic phase is completed the user can
call

staticMode()

Depending on the layout, this call might trigger com-
paction of the internal representation.

We currently do not have a specific implementation for
a dynamic layout that optimizes performance while
handing dynamic data modification; adding such an
implementation is part of our future work. In the mean
time, our implementation achieves dynamic modifica-
tion by temporarily converting to a full matrix layout.

3.7 Other Implementation Details

Our library’s internal implementation makes heavy use
of C++ templates to create and define objects of di↵er-
ent data types and layouts. In many cases, this allows
the compiler to inline functions and operations such
that calling access operations will result in little to no
overhead.

We have taken great care to expose an API to users
that does not require (excessive) templates in user
code. In many cases, however, a code has informa-
tion on data layout at compile time. The optimal
layout may have been determined by profiling, or a
kernel may be written to use a specific data layout. In
such cases, the user can provide this information to the
MultiMat library in the form of template parameters
to achieve even better performance.

For example, to get the “Density” field of type double
without templating on the layout type, one would call

getField2D<double>("Density");

In the type-templated version, the user can provide the
current layout as an additional template parameter:

getField2D<double,LayoutType>("Density");

where LayoutType indicates whether the field is stored
in full matrix or a compact layout, such as CSR. In
either case, the rest of the MultiMat access code is
exactly the same. The only change is in the template
parameter types passed to getField2D().

The MultiMat data management library is part of
Axom project developed at Lawrence Livermore Na-
tional Laboratory [18]. Axom hosts a number of
software infrastructure components for the develop-
ment of multi-physics applications and computational
tools. The Axom project is open-source under a
permissive BSD 3-clause license, and is available at
https://github.com/LLNL/axom.

Our library also provides support for simulations that
involve multiple components per 1D- or 2D-field value.

284

For example, a vector field in 3D could contain three
components per value. In general, those components
are accessed with a component index in addition to the
cell and material ID (i.e. findValue(cellId, matId,

comp)). For simplicity’s sake, we omitted this in our
API overview. We refer the interested reader to our
library project page for more information.

4. EVALUATION

In this section, we use a suite of representative com-
putational scenarios to evaluate the usability and per-
formance of our MultiMat library against native im-
plementations that directly use the multimaterial field
data structures.

Our benchmark suite is composed of several multi-
material physics kernels proposed by Garimella and
Robey [8].

The three scenarios are proxies for typical multima-
terial kernels and each have di↵erent computational
access patterns:

Average cell density. Compute the average density
of a cell from those of its materials. The result is
a 1D density field on the cells of the mesh. For
each cell, the material-based density terms are
weighted by the material volume fractions.

Material-dependent pressure. Evaluate the mat-
erial-dependent pressure in each cell using the
ideal gas law p = nrt/v. This kernel requires
material-based data for each term and is typically
more expensive than the simple array lookup im-
plemented in this kernel.

Material-dependent neighborhood density.

This is the most complex kernel in our bench-
mark. It computes the per-material average
density from the cell’s precomputed list of
neighbors. Each term is weighted by the inverse
squared distance to the neighbor.

We compare cell-dominant and material-dominant
variants of each computational kernel for the full and
compact layouts of the native and MultiMat imple-
mentations. We note that, for the remainder of this
section, we are interested in comparing each MultiMat

variant against its native (direct-indexing) counter-
part, rather than comparing the di↵erent layouts
against each other.

4.1 Code Comparison

Our API is designed with ease of use for the end users
in mind. We want them to focus on their physics ap-
plications rather than on low level data structure and

bookkeeping details. Reading and writing MultiMat-
based code should be natural and intuitive once users
get accustomed to a few concepts, like subfields and
subindexes. With that in mind, we present some code
comparisons. For easier comparisons across di↵erent
implementations, we use color highlights for related
lines of code.

We begin by comparing several implementations of the
“Average cell density” physics kernel (see Listings 1, 2,
3 and 4). Listing 1a shows a cell-dominant full matrix
layout implementation. Within the nested for-loop,
the flat-index is explicitly calculated and used to ac-
cess the array at the specific data location. Listing 1b
shows the same kernel but using the CSR layout, which
involves a level of indirection when accessing the val-
ues by first getting the flat-index with the begin idx

(the CSR’s IA array described in Section 2) and using
the flat-index to access the actual data array. In both
cases, explicit indexing calculation has to be done in
order to access the data. Changing the data struc-
ture layout would also mean rewriting the calculation
kernel, even if the algorithm itself does not change.

Using our MultiMat library, the previous two imple-
mentations for full and compact layouts can be imple-
mented with the exact same code due to our unified
API (see Listing 2). The outer loop goes through each
cell and acquires the subfield using the parenthesis op-
erator field2D(c). The inner for-loop then iterates
through the subfield. In the full matrix layout, the
subfield would contain the field data for all materi-
als, while in the compact layout, the subfield would
contain only data associated with materials that are
actually present in cell c. Using the MultiMat subfield
API, manual indexing work is kept to a minimum.

The previous examples were cell-dominant algorithms.
The next two listings show material-dominant imple-
mentations of this algorithm. A key di↵erence in
this implementation is that there are separate pre-
and post-processing loops to initialize the data and
to normalize the averages, respectively. Listing 3a
shows the physics kernel using a full matrix material-
dominant layout. Similar to the cell-dominant equiv-
alent, the outer loop goes through each material, and
the inner loop through each cell using an explicit flat-
index. Listing 3b shows the same kernel using the
CSR layout. An additional array, colIdx, containing
the column index is used to retrieve the cell ID in the
material-dominant version. This is the JA array for
CSR as described in Section 2.

Listing 4 shows the material-dominant algorithm us-
ing our MultiMat subfield access method. The cell ID
is retrieved with the cellId() call. Aside from the
pre- and post-processing loops and the cellId() call,
the material-dominant code is quite similar to the cell-
dominant equivalent. The same code is used for both

285

void AverageDensity_CellDom_full(

int ncells , int nmats ,

vector <double >& VolFrac ,

vector <double >& DensityFrac ,

vector <double >& Volume ,

vector <double >& DensityAvg)

{

for (int c = 0; c < ncells; ++c)

{

double densitySum = 0.0;

for (int m = 0;

m < nmats; ++m)

{

densitySum += DensityFrac[c*nmats + m]

* VolFrac[c*nmats + m];

}

DensityAvg[c] = densitySum / Volume[c];

}

}

(a) Cell-dominant Full layout

void AverageDensity_CellDom_CSR(

int ncells ,

vector <double >& VolFrac ,

vector <double >& DensityFrac ,

vector <double >& Volume ,

vector <int >& beginIdx ,

vector <double >& DensityAvg)

{

for (int c = 0; c < ncells; ++c)

{

double densitySum = 0.0;

for (int k = beginIdx[c];

k < beginIdx[c + 1]; ++k)

{

densitySum += DensityFrac[k]

* VolFrac[k];

}

DensityAvg[c] = densitySum / Volume[c];

}

}

(b) Cell-dominant CSR layout

Listing 1: Native implementation for Scenario 1: average cell density, in cell-dominant layout

void AverageDensity_CellDom_MM(

int ncells ,

Field2D& VolFrac ,

Field2D& DensityFrac ,

Field1D& Volume ,

Field1D& DensityAvg)

{

for (int c = 0; c < ncells; ++c)

{

double densitySum = 0.0;

auto DensityFracRow = DensityFrac(c);

auto VolFracRow = VolFrac(c);

for (int k = 0;

k < DensityFracRow.size(); ++k)

{

densitySum += DensityFracRow(k)

* VolFracRow(k);

}

DensityAvg(c) = densitySum / Volume(c);

}

}

Listing 2: Scenario 1 for full or compact cell-dominant
layout using MultiMat subfields.

full and compact layouts for the material-dominant
loop, and there are few changes in index calculation
or field access.

Listings 5 and 6 present implementations of the
full and compact cell-dominant “Material-dependent
neighbor density” benchmark, respectively. For each
cell and material, this kernel loops through the
neighboring cells and computes the sum of distance-
weighted densities. Since the full variant checks vol-
ume fractions to see if materials are present (high-
lighted in green), while the compact variant performs
indirection to find the material index (highlighted in
pink), we present separate MultiMat implementations
in Listings 5b and 6b, respectively, to better compare

against their native counterparts.

For the sake of brevity, we present only a selected few
layout and algorithm combinations to demonstrate our
code readability. The “Material-dependent pressure”
kernel comparisons have similar characteristics as the
presented examples.

We hope that the above listings have demonstrated a
more meaningful usage of our API. In general, native
code developed in full layout tends to be simpler since
the cell and material IDs can be used directly, but
array access involves manual calculation of the flat-
indices and this representation can be ine�cient for
sparse materials. Conversely, compact layouts, such
as CSR, allow for more e�cient code, but can be less
intuitive due to the array indirection required to access
the cell/material ID and their respective values (such
as the beginIdx and colIdx arrays in CSR). With our
MultiMat API, users can benefit from the e�ciency
of a compact layout while directly indexing into ar-
rays, without explicit array indirection. Even in cases
where our API results in more lines of code, the code
is easier to develop and interpret since the underlying
implementation details are hidden away. The result-
ing code is more straightforward, with as few details
unrelated to the physics calculation as possible.

For demonstration purposes, the example listings
shown above are shorter and simpler than real world
multimaterial calculations with little computational
work in each kernel. In large multimaterial codebases,
having to keep track of bookkeeping details about the
underlying data layout can quickly become a burden in
the development process. In these situations, a clear
and comprehensive API that simplifies understanding
of the code can be highly valuable.

286

double AverageDensity_MatDom_full(

int ncells , int nmats ,

vector <double >& VolFrac ,

vector <double >& DensityFrac ,

vector <double >& Volume ,

vector <double >& DensityAvg)

{

for (int c = 0; c < ncells; ++c)

{

DensityAvg[c] = 0.0;

}

for (int m = 0; m < nmats; ++m)

{

for (int c = 0;

c < ncells; ++c)

{

DensityAvg[c]

+= DensityFrac[m*ncells + c]

* VolFrac[m*ncells + c];

}

}

for (int c = 0; c < ncells; ++c) {

DensityAvg[c] /= Volume[c];

}

}

(a) Material-dominant Full layout

double AverageDensity_MatDom_CSR(

int ncells , int nmats ,

vector <double >& VolFrac ,

vector <double >& DensityFrac ,

vector <double >& Volume ,

vector <int >& beginIdx ,

vector <int >& colIdx ,

vector <double >& DensityAvg)

{

for (int c = 0 ; c < ncells ; ++c)

{

DensityAvg[c] = 0.0;

}

for (int m = 0; m < nmats; ++m)

{

for (int i = beginIdx[m];

i < beginIdx[m + 1]; ++i)

{

int c = colIdx[i];

DensityAvg[c]

+= DensityFrac[i]

* VolFrac[i];

}

}

for (int c = 0; c < ncells; ++c) {

DensityAvg[c] /= Volume[c];

}

}

(b) Material-dominant CSR layout

Listing 3: Native implementation for Scenario 1: average cell density, in material-dominant layout

void AverageDensity_MatDom_MM(

int ncells , int nmats

Field2D& DensityFrac ,

Field2D& VolFrac ,

Field1D& Volume ,

Field1D& DensityAvg)

{

for (int c = 0; c < ncells; ++c)

{

DensityAvg(c) = 0.0;

}

for (int m = 0; m < nmats; ++m)

{

auto DensityFracRow = DensityFrac(m);

auto VolFracRow = VolFrac(m);

for (int k = 0 ;

k < DensityFracRow.size() ; ++k)

{

int c = DensityFracRow.cellId(k);

DensityAvg(c)

+= DensityFracRow(k)

* VolFracRow(k);

}

}

for (int c = 0; c < ncells; ++c)

{

DensityAvg(c) /= Volume(c);

}

}

Listing 4: Scenario 1 with full or compact material-
dominant layout using MultiMat subfield

One additional feature that is not highlighted in our
code samples relates to internal validity checks that we
have implemented throughout the MultiMat library.
Every class has an internal isValid() function that
checks the internal validity of the overall structure.
For example, the function checks that none of the
pointers are nullptr and that the internal indices are
within their proper ranges. Furthermore, since book-
keeping and indirection errors are developer errors, de-
bug builds of the code guard all indirection accesses
(such as the subfield parenthesis operator) with asserts
that validate the provided indices to ensure they are
in the proper range. If this check fails, an error mes-
sage and complete stacktrace are printed out to help
the developer pinpoint the problem. These checks are
disabled in release builds and so have no runtime costs.

As noted above, powerful, popular linear algebra pack-
ages exist that implement the same sparsity and stor-
age schemes However, MultiMat’s function goes be-
yond that of a linear algebra package. Our library
is designed to track the materials that interact in a
computational mesh. The overall mesh index space
is shared by all the materials, and all the fields of a
particular material share the same index set. When
transitions are needed between sparsity or material-
vs. cell-dominant storage, MultiMat takes care of the
tedious bookkeeping that is needed to maintain the in-
terrelation of the materials. MultiMat is also designed
for portability across platforms and interoperability

287

void AvgDensityOverNeighbor_CellDom_Full(

int ncells , int nmats ,

vector <double >& VolFrac ,

vector <double >& DensityFrac ,

vector <int >& numNbrsInCell ,

vector <int >& cellNbrs ,

vector <double >& cen , //cell centroid

vector <double > MatDensityAvg)

{

for (int c = 0; c < ncells; ++c)

{

// Get the neighbors for this cell

int* nbrs = &(cellNbrs[c * MAX_NBR]);

int nn = numNbrsInCell[c];

// center of this cell

double xc[2] = {cen[c * 2], cen[c * 2 + 1]};

for (int m = 0;

m < nmats; ++m)

{

if (VolFrac[c*nmats + m] > 0.0)

{

int nnm = 0; // material neighbor count

double den = 0.0;

//loop through each neighboring cell

for (int n = 0; n < nn; ++n)

{

int jc = nbrs[n]; // neighbor cellID

if (VolFrac[jc*nmats + m] > 0.0)

{

double dx = xc[0] - cen[jc * 2];

double dy = xc[1] - cen[jc * 2 + 1];

double dsqr += dx*dx + dy*dy;

den += DensityFrac[jc*nmats+m]/dsqr;

++nnm;

}

}

if (nnm > 0)

MatDensityAvg[c*nmats + m] = den / nnm;

else

MatDensityAvg[c*nmats + m] = 0.0;

}

else

{

MatDensityAvg[c*nmats + m] = 0.0;

}

}

}

}

(a) Using native implementation

void AvgDensityOverNeighbor_CellDom_Full_MM(

int ncells ,

Field2D& VolFrac ,

Field2D& DensityFrac ,

Relation& cellNbrs ,

Field1D& cen , //cell centroid

Field2D& MatDensityAvg)

{

for (int c = 0; c < ncells; ++c)

{

// Get the neighbors for this cell

auto nbrs = cellNbrs[c];

int nn = nbrs.size();

// center of this cell

double xc[2] = {cen(c,0), cen(c,1)};

auto MatDensityAvgRow = MatDensityAvg(c);

for (int m = 0;

m < MatDensityAvgRow.size(); ++m)

{

if (VolFrac(c, m) > 0.0)

{

int nnm = 0; // material neighbor count

double den = 0.0;

//loop through each neighboring cell

for (int n = 0; n < nn; ++n)

{

int jc = nbrs[n]; // neighbor cellID

if(VolFrac(jc, m) > 0.0)

{

double dx = xc[0] - cen(jc ,0);

double dy = xc[1] - cen(jc ,1);

double dsqr = dx*dx + dy*dy;

den += DensityFrac(jc , m) / dsqr;

++nnm;

}

}

if(nnm > 0)

MatDensityAvgRow(m) = den / nnm;

else

MatDensityAvgRow(m) = 0.0;

}

else

{

MatDensityAvgRow(m) = 0.0;

}

}

}

}

(b) Using MultiMat subfield

Listing 5: Code for scenario 3: material-dependent neighbor density, for full cell-dominant layout

288

void AvgDensityOverNeighbor_CellDom_Compact_CSR(

int ncells ,

vector <double >& DensityFrac ,

vector <int >& numNbrsInCell ,

vector <int >& cellNbrs ,

vector <double >& cen , //cell centroid

vector <int >& beginIdx ,

vector <int >& colIdx ,

vector <double > MatDensityAvg)

{

for (int c = 0; c < ncells; ++c)

{

// Get the neighbors for this cell

int* nbrs = &(cellNbrs[ic * MAX_NBR]);

int nn = numNbrsInCell[c];

// center of this cell

double xc[2] = {cen[c * 2], cen[c * 2 + 1]};

for (int ii = beginIdx[c];

ii < beginIdx[c + 1]; ++ii)

{

int m = colIdx[ii];

int nnm = 0; // material neighbor count

double den = 0.0;

//loop through each neighboring cell

for (int n = 0; n < nn; ++n)

{

int jc = nbrs[n]; // neighbor cellID

for (int jj = beginIdx[jc];

jj < beginIdx[jc + 1]; ++jj)

{

if (colIdx[jj] == m)

{

double dx = xc[0] - cen[jc*2];

double dy = xc[1] - cen[jc*2 + 1];

double dsqr = dx*dx + dy*dy;

den += DensityFrac[jj] / dsqr;

++nnm;

break;

}

}

}

if(nnm > 0)

MatDensityAvg[ii] = den / nnm;

else

MatDensityAvg[ii] = 0.0;

}

}

}

(a) Using native implementation of CSR

void AvgDensityOverNeighbor_CellDom_Compact_MM(

int ncells ,

Field2D& DensityFrac ,

Relation& cellNbrs ,

Field1D& cen , //cell centroid

Field2D& MatDensityAvg)

{

for (int c = 0; c < ncells; ++c)

{

// Get the neighbors for this cell

auto nbrs = cellNbrs[c];

int nn = nbrs.size();

// center of this cell

double xc[2] = {cen(c,0), cen(c,1)};

auto MatDensityAvgRow = MatDensityAvg(c);

for (int k = 0;

k < MatDensityAvgRow.size(); ++k)

{

int m = MatDensityAvgRow.matId(k);

int nnm = 0; // material neighbor count

double den = 0.0;

//loop through each neighboring cell

for (int n = 0; n < nn; ++n)

{

int jc = nbrs[n]; // neighbor cellID

auto* val = DensityFrac.findValue(jc, m);

if (val != nullptr)

{

double dx = xc[0] - cen(jc , 0);

double dy = xc[1] - cen(jc , 1);

double dsqr = dx*dx + dy * dy;

den += *val / dsqr;

++nnm;

}

}

if(nnm > 0)

MatDensityAvgRow(k) = den / nnm;

else

MatDensityAvgRow(k) = 0.0;

}

}

}

(b) Using MultiMat subfield and findValue

Listing 6: Code for scenario 3: material-dependent neighbor density, in compact cell-dominant layout

289

between packages, and to allow a user control over the
data format. With care, a user could add such features
to the matrix classes of their linear algebra libraries to
achieve a multimaterial data management API, but
that is the burden MultiMat was designed to lift from
the user.

4.2 Performance Comparison

For our performance analysis, we compare MultiMat

against native full and compact (CSR) implemen-
tations on our benchmark scenarios. For each
benchmark, we have implemented cell-dominant and
material-dominant variants for the full and compact
representations, leading to twelve samples.

Furthermore, to compare the code on di↵erent mate-
rial distributions, we use the two test data sets pro-
posed in [7] for our timing benchmarks. Both datasets
are 2D meshes with one million quadrilateral cells and
fifty materials. The materials in the first dataset are
defined by concentric geometric square disks whose
boundaries are not aligned with the cell boundaries. In
this case, about 5% of the cells contain more than one
material. For the second dataset, the materials were
initialized randomly such that about 80% of the cells
contain a single material, about 12.5% contain two
materials, about 5% contain three materials and the
remaining 2.5% contain four materials. As described
in [7, 8], the sizes of these datasets were chosen so that
the dataset does not completely fit in L1 cache, and the
distributions were selected to match initial and later
distributions in multimaterial simulations. As such,
the expected performance of the benchmark kernels
should lie somewhere within the range of the obtained
results.

Figures 5, 6 and 7 show the three test algorithms for
both data sets. Our tests were executed on a 2.1
GHz Intel Xeon E5-2695 CPU computer on a linux-
based operating system and were compiled in release
mode with gcc-8.1.0. We ran each test 20 times and
present the median run-time of the 20 runs.

From the plot, we can see that for the three algo-
rithms, the templated MultiMat version has compa-
rable performance to the native implementation in all
cases, with little overhead. The non-templated version
of MultiMat is slower in most cases due to reduced
optimization opportunities, such as virtual function
calls that the compiler is unable to inline. The non-
templated version of our API can be useful for cases
when users would like to focus on the development and
less on performance.

It is worth noting that these micro-benchmarks are
very simple, and as such exaggerate the expected over-
head of MultiMat. Typical kernels will have signifi-
cantly more computational work, e↵ectively lowering

the overhead imposed by multimaterial indirection.

5. CONCLUDING REMARKS

We have presented MultiMat, an open source library
for managing multimaterial simulation data that can
flexibly convert between di↵erent underlying data
structures and layouts. Our API is easy to use and
only requires users to be familiar with a few sim-
ple concepts, following the matrix-based metaphor.
MultiMat users do not need to be aware of the under-
lying implementation details or bookkeeping and their
code can transparently support new underlying imple-
mentations. MultiMat is part of the Axom project [18]
which provides Computer Science infrastructure com-
ponents for HPC applications.

We compared physics kernels implemented using our
API with “native” implementations that directly in-
dex into multimaterial data structures. We showed
that code written using our API is more straightfor-
ward, and avoids explicit index calculations and array
indirections used in native implementations. We have
demonstrated that, in many cases, our API a↵ords
a layout-agnostic implementation for physics kernels
without sacrificing performance, as in our first and sec-
ond benchmark kernels. In cases where the algorithm
depends on characteristics of the layout, such as our
third benchmark, it is easy to port the code using a
few API calls, without adding explicit layout-specific
bookkeeping or indexing details.

Our API is still undergoing development and we are
planning to add support for more features. In partic-
ular, we plan to implement more compact layout op-
tions. Of particular interest is an array-based linked
list representation for cell-dominant field data from
the Silo I/O library [17] since this is incorporated into
several multiphysics codes. A nice feature of this rep-
resentation is its support for dynamic updates, e.g.
adding and removing materials from fields. This rep-
resentation will also help us assess and improve our
iterator API since it does not support random access
within a subfield. We are also investigating options for
dynamic updates on GPUs and parallel architectures,
such as a CSR-based dynamic data structure [19].

Our current implementation stores a field in one layout
at a time. Based on user request, we are planning
to allow for a field to have more than one layout if
necessary. This will reduce the overhead in converting
between di↵erent layouts on demand.

We are looking into incorporating MultiMat into
Marbl, a multiphysics code at LLNL based on high
order discretizations [20], and anticipate incorporating
design feedback from its developers into MultiMat.

290

Full Matrix
Cell Dominant

Compact
Cell Dominant

Full Matrix
Material Dominant

Compact
Material Dominant

Data layout

0

50

100

150

200

T
im

e
(m

ill
is

ec
on

ds
)

Time Comparison for Average Density

Native

MultiMat templated

MultiMat

Geometry data

Random data

Figure 5: Timing for average density algorithm in scenario 1

Full Matrix
Cell Dominant

Compact
Cell Dominant

Full Matrix
Material Dominant

Compact
Material Dominant

Data layout

0

50

100

150

200

250

300

350

T
im

e
(m

ill
is

ec
on

ds
)

Time Comparison for Pressure Calculate from Ideal Gas Law

Native

MultiMat templated

MultiMat

Geometry data

Random data

Figure 6: Timing for pressure calculated from ideal gas law in scenario 2

Full Matrix
Cell Dominant

Compact
Cell Dominant

Full Matrix
Material Dominant

Compact
Material Dominant

Data layout

0

50

100

150

200

250

T
im

e
(m

ill
is

ec
on

ds
)

Time Comparison for Neighboring Cell Material Density

Native

MultiMat templated

MultiMat

Geometry data

Random data

Figure 7: Timing for material density of neighboring cells algorithm in scenario 3

291

ACKNOWLEDGEMENTS

This work was performed under the auspices of
the U.S. Department of Energy by Lawrence Liver-
more National Laboratory under contract DE-AC52-
07NA27344.

References

[1] Galera S., Maire P., Breil J. “A two-dimensional
unstructured cell-centered multi-material ALE
scheme using VOF interface reconstruction.”
Journal of Computational Physics, vol. 229,
no. 16, 5755–5787, 2010

[2] Barlow A.J., Maire P.H., Rider W.J., Rieben
R.N., Shashkov M.J. “Arbitrary Lagrangian–
Eulerian methods for modeling high-speed com-
pressible multimaterial flows.” Journal of Com-
putational Physics, vol. 322, 603–665, 2016

[3] Hirt C.W., Nichols B. “Volume of fluid (VOF)
method for the dynamics of free boundaries.”
Journal of Computational Physics, vol. 39, no. 1,
201–225, 1981

[4] Raman K.S., Hurricane O.A., Park H.S., Reming-
ton B.A., Robey H., Smalyuk V.A., Drake R.P.,
Krauland C.M., Kuranz C.C., Hansen J.F., Hard-
ing E.C. “Three-dimensional modeling and anal-
ysis of a high energy density Kelvin-Helmholtz
experiment.” Physics of Plasmas, vol. 19, no. 9,
092112, 2012

[5] Marinak M.M., Kerbel G.D., Gentile N.A., Jones
O., Munro D., Pollaine S., Dittrich T.R., Haan
S.W. “Three-dimensional HYDRA simulations
of National Ignition Facility targets.” Physics of
Plasmas, vol. 8, no. 5, 2275–2280, 2001

[6] Mann Z.A. “Three public enemies: cut, copy, and
paste.” Computer, vol. 39, no. 7, 31–35, 2006

[7] Fogerty S., Martineau M., Garimella R., Robey
R. “A comparative study of multi-material
data structures for computational physics appli-
cations.” Computers & Mathematics with Appli-
cations, vol. 78, no. 2, 565–581, July 2018

[8] Garimella R., Robey R. “A Comparative
Study of Multi-material Data Structures for
Computational Physics Applications.” Tech.
Rep. LA-UR-16-23889, Los Alamos National
Lab.(LANL), Los Alamos, NM (United States),
2017. Example code at https://github.com/

lanl/MultiMatTest

[9] Guennebaud G., Jacob B., et al. “Eigen v3.”
http://eigen.tuxfamily.org, 2010

[10] Sanderson C., Curtin R. “Armadillo: A template-
based C++ library for linear algebra.” Journal of
Open Source Software, vol. 1, no. 2, 26, 2016

[11] Saad Y. Iterative Methods for Sparse Linear Sys-
tems. Society for Industrial and Applied Mathe-
matics, 2nd edn., 2003

[12] Botsch M., Kobbelt L., Pauly M., Alliez P., Lévy
B. Polygon mesh processing. AK Peters/CRC
Press, 2010

[13] De Floriani L., Hui A. “Shape Representa-
tions Based on Simplicial and Cell Complexes.”
D. Schmalstieg, J. Bittner, editors, Eurographics
State of the Art Reports, pp. 63–87. Prague, 2007

[14] Andrysco N., Tricoche X. “Matrix trees.” Com-
puter Graphics Forum, vol. 29, pp. 963–972. Wi-
ley Online Library, 2010

[15] Sauer F., Xie J., Ma K.L. “A combined Eulerian-
Lagrangian data representation for large-scale ap-
plications.” IEEE transactions on visualization
and computer graphics, vol. 23, no. 10, 2248–2261,
2016

[16] Jacobson A., Panozzo D., et al. “libigl:
A simple C++ geometry processing library.”
https://libigl.github.io, 2018

[17] Whitlock B. “Getting data into VisIt.” Tech.
Rep. LLNL-SM-446033, Lawrence Livermore Na-
tional Laboratory, 2010

[18] Hornung R.D., Black A., Capps A., Corbett B.,
Elliott N., Harrison C., Settgast R., Taylor L.,
Weiss K., White C., Zagaris G. “Axom: A
computer science infrastructure toolkit for high
performance computing.”, 2017. URL https:

//github.com/llnl/axom

[19] King J., Gilray T., Kirby R.M., Might M. “Dy-
namic sparse-matrix allocation on GPUs.” Inter-
national Conference on High Performance Com-
puting, pp. 61–80. Springer, 2016

[20] Anderson R., Black A., Blakeley B., Bleile R.,
Busby L., Camier J.S., Ciurej J., Cook A., Do-
brev V., Elliott N., Grondalski J., Harrison C.,
Hornung R., Kolev T., Legendre M., Liu W., Nis-
sen W., Olson B., Osawe M., Papadimitriou G.,
Pearce O., Pember R., Skinner A., Stevens D.,
Stitt T., Taylor L., Tomov V., Rieben R., Vargas
A., Weiss K., White D. “The Multiphysics on
Advanced Platforms Project.” Tech. Rep. LLNL-
TR-815869, LLNL, Oct 2020

292

