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ABSTRACT

Understanding and quantifying the e↵ects of vertex insertion, perturbation, and weight allocation is useful for mesh
generation and optimization. For weighted primal-dual meshes, the sensitivity of the orthoradius to mesh variations is
especially important. To this end, this paper presents an analytic formula for the di↵erence between the circumradius
and orthoradius of a weighted triangle in terms of edge lengths and point weights under certain weight and edge
assumptions. Current literature [1] o↵ers a loose upper bound on the this di↵erence, but as far as we know this is the
first formula presented in terms of edge lengths and point weights. A formula in these terms is beneficial as these are
fundamental quantities which enable a more immediate determination of how the perturbation of a point location or
weight a↵ects this di↵erence. We apply this result to the VoroCrust algorithm to obtain the same quality guarantees
under looser sampling conditions.

Keywords: mesh generation, computational geometry, weighted Delaunay triangulation, Voronoi
tessellation

1. INTRODUCTION

A quality mesh is important in a variety of applications
such as computer graphics, scientific and engineering
simulations, and geometric modeling. Mesh genera-
tion algorithms based on Delaunay triangulations are
advantageous because of their well-developed theory
and algorithms [2, 3, 4, 5, 6, 7, 8], fast vertex insertion
[5], and optimality properties with respect to interpo-
lation and maximization of minimum angles [9]. In
addition, Delaunay triangulations have an orthogonal
dual mesh, the Voronoi tesselation. Many geometry
processing applications rely on the dual structure of
the Delaunay triangulation [10].

A Delaunay triangulation has the property that the
interior of the circumball of each triangle is empty of
other vertices in the triangulation. A Voronoi tessel-
lation is a partition of the space into Voronoi cells.
A Voronoi cell corresponding to a specific vertex (cell
generator) is defined as the region for which the dis-

tance to the cell generator is less than or equal to
the distance to all other vertices in the triangula-
tion. By adding weights to the vertices, the De-
launay/Voronoi primal/dual mesh is generalized to
the weighted-Delaunay/weighted-Voronoi primal/dual
mesh [5]. A weighted-Voronoi diagram is also known
as a power diagram. In the context of a weighted-
Voronoi tessellation, a larger weight corresponds to a
relatively larger weighted-Voronoi cell. Vertex weights
also provide control over other properties of the or-
thogonal dual mesh such as the location of the dual
vertices, how well-centered a mesh is, the shape of
dual cells, and are important for applications such as
the generation of well-centered meshes, sphere pack-
ing, and self-supporting surfaces [10, 11].

Delaunay refinement, where vertices are added to a
Delaunay triangulation or a constrained Delaunay tri-
angulation, vertex perturbation [2], and smart weight
assignment to existing vertices are common Delaunay-
based methods to build a suitable mesh (see [1] for a
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discussion on this subject). In particular, introduc-
tion of appropriate point weights are important for
primal-dual meshes, especially when a well-centered
mesh is desired [10]. Furthermore, polyhedral meshing
methods based on the Voronoi tesselation, for exam-
ple the VoroCrust [12, 13], and power crust algorithms
[14, 15], utilize a sample of weighted points in the mesh
building process. Thus it is desirable to understand
how a Delaunay mesh changes with respect to vertex
insertion and perturbation, and weight perturbation.
In particular, the di↵erence between circumradius and
weighted circumradius (orthoradius) is useful for mesh
optimization. For example, Engwirda [11] uses a qual-
ity metric that directly measures the distance between
circumcenter and orthocenter, a quantity that can be
bounded using our formula, for a mimetic formulation
of ocean climate simulations.

Cheng et. al [1] show that the circumradius of a trian-
gle is bounded by a constant times its orthoradius. In
particular, if4s1s2s3 has circumradius R and orthora-
dius R̂, where si has weight wi 2 [0,↵2N(si)

2] for ↵ 2
[0, 1/2) and N(si) is the distance from si to its near-
est vertex, then R  cradR̂, where crad = 1/

p
1� 4↵2.

This result gives a constant upper bound on radius-
edge ratio, one measure of mesh quality. However, the
bound is not tight and the authors conjecture that the
bound can be improved to crad = 1/

p
1� 3↵2. Addi-

tionally, a formula in terms of edge lengths and point
weights is beneficial as these are more fundamental
quantities than the radius-edge ratio. Furthermore,
the radius depends on the location of three vertices
whereas an edge length depends on only two. Thus, it
is more immediately clear how the perturbation of a
point location or weight a↵ects the di↵erence between
the circumradius and orthoradius.

In this paper, we give an analytic formula for the
di↵erence of the circumradius and orthoradius of a
weighted triangle under slightly relaxed conditions on
point weights and edge lengths. Specifically, this as-
sumption is that the magnitude of the di↵erences be-
tween point weights is less than or equal to the edge
length squared. Such limits on spacing and weights
are common, as in standard sparse sampling algo-
rithms [16]. We then apply our result to the VoroCrust
method in Abdelkader et al. [12].

2. STATEMENT OF PROBLEM

In this paper we find a formula for R � R̂ where R
is the circumradius of a weighted triangle and R̂ is
the orthoradius, under minor assumptions on point
weights and edge lengths. We write ts = (si, sj , sk)
where each si is a weighted point si = (s0i, s

00
i ). The

point si may be interpreted as a ball with center s0i
and weight or squared radius of s00i . Note that s00i may
be negative.

We assume that the di↵erences in point weights is
small compared to edge lengths. In particular,

|s00i � s00j |
|s0i � s0j |2

 1 8 si, sj 2 t. (1)

Such limits on spacing and weights are common, as in
standard sparse sampling algorithms [16].

The characteristic point or orthoball, Ẑ = (ẑ, R̂2), of
ts is defined as

⇧(si, Ẑ) := (s0i � ẑ)2 � R̂2 � s00i = 0 8si 2 ts. (2)

The circumball, Z = (z,R2), of t is defined as

(s0i � z)2 �R2 = 0 8si 2 t. (3)

Define t(↵) = (si(↵), sj(↵), sk(↵)) where si(↵) =
(s0i, s

00
i � ↵) for all si(↵) 2 ts(↵). The orthoball is

Ẑ(↵) = (ẑ, R̂2 + ↵). (4)

That is the orthoball, Ẑ(↵) = (ẑ(↵), R̂2(↵)), of t(↵)
satisfies

ẑ(↵) = ẑ

R̂2(↵) = R̂2 + ↵. (5)

3. DERIVATION OF DIFFERENCE

Without loss of generality, assume si is the vertex
with the smallest weight ↵. That is, ↵ = s00i =
min(s00i , s

00
j , s

00
k). Due to the relationship shown in

(5), we change the weights by ↵ so one vertex has
weight zero and the other two vertex weights are non-
negative. In particular, consider the triangle ts(↵) =
t = (pi, pj , pk) where

pi = (s0i, s
00
i � ↵) = (A, 0)

pj = (s0j , s
00
j � ↵) = (B,wB)

pk = (s0k, s
00
k � ↵) = (C,wC). (6)

The triangle t has the same orthocenter as ts and or-
thoradius R̂2 = R̂2

s +↵ where R̂s is the orthoradius of
ts.

We define the edge lengths

a = |BC| (7)

b = |CA| (8)

c = |AB| (9)

and
✓ = 6 CAB (10)

as shown in Figure 1.
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Figure 1: The weighted triangle t = (pi, pj , pk), with
edge lengths a, b, c, and orthoball Ẑ = (ẑ, R̂2).

Note that the assumption in (1) ensures that the
boundary of the ball Ẑ intersects the triangle edges.
The point Ẑ is the circumball of the set of unweighted
points t̂ = (Â, B̂, Ĉ) where Â = A as shown in Figure
2.

We also define

â = |B̂Ĉ| (11)

b̂ = |ĈÂ| (12)

ĉ = |ÂB̂|. (13)

Figure 2: The orthoball Ẑ of t is also the circumball of
4ÂB̂Ĉ with edge lengths â, b̂, and ĉ. Without loss of
generality, the vertex A is associated with the minimum
vertex weight for the triangle. Thus, as shown by (6) we
have A = Â.

The areas of the triangles defined by t and t̂ are re-
spectively

M = bc
sin ✓
2

, M̂ = b̂ĉ
sin ✓
2

. (14)

In addition,

R =
abc
4M

, R̂ =
âb̂ĉ

4M̂
(15)

which gives

R� R̂ =
a� â
2 sin ✓

(16)

and
R� R̂

R
=

a� â
a

. (17)

In order to estimate a � â, we find �b and �c where
b = b̂+ �b and c = ĉ+ �c. The characteristic point xe

of the edge �e = AB satisfies

|x0
e � p0i|2 � x00

e = 0

|x0
e � p0j |2 � x00

e � p00j = 0 (18)

with x00
e minimal. From [17] we have

x0
e = tA+ (1� t)B (19)

with

t =
1
2
(1 +

wB

c2
). (20)

Combining (19) and (20) gives

x0
e =

1
2
(A+B) +

wB

2c2
(A�B). (21)

We also have

x0
e = A+

p
x00
e

c
(B �A) (22)

which with (21) gives

c = 2
p

x00
e +

wB

c
. (23)

Additionally,
ĉ = 2

p
x00
e (24)

which gives

�c = c� ĉ =
wB

c
(25)

�b = b� b̂ =
wC

b
. (26)

From the law of cosines

â2 = b̂2 + ĉ2 � 2b̂ĉ cos ✓ (27)

and

a2 = b2 + c2 � 2bc cos ✓

= (b̂+ �b)
2 + (ĉ+ �c)

2 � 2(b̂+ �b)(ĉ+ �c) cos ✓

= (b̂2 + ĉ2 � 2b̂ĉ cos ✓) + 2b̂�b + 2ĉ�c + �2b + �2c

�2(b̂�c + ĉ�b + �b�c) cos ✓

= â2 + (2b̂�b + 2ĉ�c + �2b + �2c )

�2(b̂�c + ĉ�b + �b�c) cos ✓

= â2 + 2(wB + wC)� (
wB

c
)2 � (

wC

b
)2

�2
� bwB

c
+

cwC

b
� wBwC

bc

�
cos ✓

:= â2 + k. (28)
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This gives

R� R̂(↵) =
a�

p
a2 � k

2 sin ✓


p
k

2 sin ✓
(29)

and
R� R̂(↵)

R
=

a�
p
a2 � k
a


p
k
a

(30)

where

k = 2(wB + wC)� (
wB

c
)2 � (

wC

b
)2

�2
� cwC

b
+

bwB

c
� wBwC

bc

�
cos ✓. (31)

Theorem 1. Given a weighted triangle s = (si, sj , sk)
and under the assumption of (1), the di↵erence be-
tween the circumradius and orthoradius is given by

R� R̂ =
a�

p
a2 � k

2 sin ✓
+ s00i (32)

where s00i = min(s00i , s
00
j , s

00
k), the constant k is given in

(31), wB = s00j � s00i , and wC = s00k � s00i .

4. APPLICATIONS

This result may be applied to a variety of applica-
tions. In this paper, we apply our result to the Voro-
Crust algorithm discussed in “Sampling Conditions for
Conforming Voronoi Meshing by the VoroCrust Algo-
rithm” [12]. In Section 4.1, we use Theorem 1 to ob-
tain the same quality guarantees with looser sampling
criterion. The results may also be applied to [13] to
improve termination criterion. Looser sampling and
improved termination criteria result in a coarser mesh
with fewer elements as well as a reduced algorithm run
time.

Numerous publications rely on previously published
bounds. For example, the 2012 text containing
Cheng’s bound [1], which we discussed in Section 1 has
400 citations. While all citations most likely do not in-
volve the bound, it shows that there is high interest in
this topic. A more general bound is potentially useful
in a lot of contexts in addition to VoroCrust.

4.1 VoroCrust

We apply this result to the VoroCrust algorithm as
given in Abdelkader et al. [12]. An ✏-sampling, P,
which is �-sparse is obtained on a surface M which is
1-Lipschitz with respect to local feature size L. Each
point in P is associated with a radius which is given
by � = 2✏ times the local feature size. The set P along
with their weights defines a weighted Delaunay trian-
gulation which consists of “guide triangles”. The set S
contains sites which are the intersection points of three
spheres corresponding to triangles in the weighted De-
launay triangulation. These sites are the generators

for the Voronoi cells. A subset of these facets, M̂,
approximate the surface M. It is required that the
orthocenter of a triangle lies within a certain distance
of the surface M. Given a guarantee that the cir-
cumcenter of the triangle lies within a given distance,
one may guarantee that the orthocenter lies within a
certain distance using the di↵erence between circum-
radius and orthoradius.

The sampling conditions for P are as follows: for all
x 2 M there exists p0i 2 P such that |x� p0i| < ✏L(x)
and |p0i�p0j | � �✏min(L(p0i), L(p

0
j)). The parameter �

is set to 3/4.

Consider the guide triangle t = (pi, pj , pk). Let Li =
L(pi), the local feature size at pi. Without loss of
generality, assume that Li  Lj  Lk. We subtract
the minimum weight �2L2

i from all points in t to obtain
the scenario given in the previous section.

From sparsity and as shown in [18] Property H3, we
haveR  ✏

1�✏Li which gives an upper bound of 2 ✏
1�✏Li

on edge lengths. By Lipschitz, this gives

Lj  1 + ✏
1� ✏

Li. (33)

and similarly for Lk. Combining the upper bound on
edge lengths, sparsity conditions, and Lipschitz we ob-
tain

�✏Li  d(pi, pj) = c  2
✏

1� ✏
Li (34)

�✏Li  d(pi, pk) = b  2
✏

1� ✏
Li (35)

�✏Li  d(pj , pk) = a  2
✏(1 + ✏)
(1� ✏)2

Li. (36)

The weight

wB = �2(L2
j � L2

i ) (37)

 16✏3

(1� ✏)2
L2

i (38)

and similarly for wc. This gives

0  wB  16✏3

(1� ✏)2
L2

i (39)

0  wC  16✏3

(1� ✏)2
L2

i . (40)

Write

k = k1 + k2 cos ✓ (41)

where

k1 := 2(wB + wC)� (
wB

c
)2 � (

wC

b
)2 (42)

k2 := �2
� cwC

b
+

bwB

c
� wBwC

bc

�
. (43)
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Then using bounds on edge lengths and weights,

k1  26
✏3

(1� ✏)2
L2

i (44)

and
�27✏3L2

i

�(1� ✏)3
 k2  29✏4L2

i

�2(1� ✏)4
. (45)

Then

k  26
✏3

(1� ✏)2
L2

i

+

(
UB(k2)UB(cos ✓) if ✓  ⇡/2

LB(k2)LB(cos ✓) if ✓ > ⇡/2
(46)

where UB and LB denote the upper bound and lower
bound, respectively.

From the Central Angle Theorem we have

sin(✓) =
a
2R

. (47)

This gives

sin(✓) =
a
2R

� �(1� ✏)
2

:= ksin. (48)

We may use the law of cosines to get a lower bound
for cos ✓,

cos ✓ =
b2 + c2 � a2

2bc

� 1/4�2(1� ✏)2 � 1/2
(1 + ✏)2

(1� ✏)2

:= kcos. (49)

Note that kcos < 0.

Then if ✓  ⇡/2

sin ✓ � ksin (50)

cos ✓ 
q

1� k2
sin (51)

and if ✓ > ⇡/2

sin ✓ �
p

1� k2
cos (52)

cos ✓ � kcos. (53)

Plugging these bounds for cos ✓ and sin ✓ into (46)
along with Theorem 1 gives the desired bound. The re-
sults using the inequality a�

p
a2 � k 

p
k are shown

in Figure 3.

This result may be used to obtain the same quality
guarantees obtained in [12] but for larger ✏. In partic-
ular, Lemma 9 bounds R by

R  ⇢f R̂ (54)

with ⇢f < 1.38. The orthoradius is bounded by R̂ 
�Li which results in

R  ⇢f�Li. (55)

The bound is propagated through Lemma 11 and The-
orem 13 to obtain quality guarantees on the recon-
structed surface M̂.

Using R̂  �Li with � = 2✏, we can obtain R  1.38�Li

or |R � R̂|  .76✏ for ✏  .0047 as opposed to the
original ✏  .002 as demonstrated in Figure 3.

The bound on R given in [18] may also be used.

Figure 3: The bound on |R � R̂| as a function of ✏
for Li = 1, ✏ = 1/500 as in [12] along with the larger
✏ = .0047 which gives the same quality guarantee.

5. CONCLUSION

We presented a formula for the di↵erence between the
orthoradius and circumradius of a weighted triangle
in terms of edge lengths and point weights. As far
as we know, this is the only formula in the literature
expressed in terms of these quantities. Numerous pub-
lications rely on previously published bounds, and we
believe this new form will be both simpler to use and
give better results. As many meshing methods rely
on the Delaunay/Voronoi mesh, it is desirable to un-
derstand how a Delaunay mesh changes with respect
to vertex insertion and perturbation, and weight per-
turbation. A formula for the di↵erence between the
orthoradius and circumradius in terms of edge lengths
and point weights is beneficial as these are fundamen-
tal quantities which enables a more immediate deter-
mination of how the perturbation of a point location
or weight a↵ects this di↵erence. We applied the di↵er-
ence formula to the VoroCrust algorithm to show that
the same quality guarantees can be obtained under
looser sampling conditions.

This material is based upon work supported by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific Computing Re-
search (ASCR), Applied Mathematics Program.. Sandia National Labo-
ratories is a multi-program laboratory managed and operated by National
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Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of
Energy’s National Nuclear Security Administration under contract DE-
NA-0003525. This paper describes objective technical results and anal-
ysis. Any subjective views or opinions that might be expressed in the
paper do not necessarily represent the views of the U.S. Department of
Energy or the United States Government.
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