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ABSTRACT

Preparing CAD models for CAE simulations is a major bottleneck when dealing with small geometric features. The
process often involves de–featuring, which cannot be fully automated and requires many hours of human interaction
because it depends upon the physics considered. The NURBS–enhanced finite element method (NEFEM) decouples
the concepts of geometry and solution approximation to avoid this problem. NEFEM describes the geometry using
the boundary representation (B–rep) from CAD models, and approximates the solution using polynomial functions.
As a result, NEFEM completely removes the error due to geometric approximation and the need for de–featuring. In
this paper the meshing strategy in two dimensions is recalled. The proposed approach involves a modified advancing
front technique where boundary elements have edges that are described by a collection of boundary curves. The
strategy required to utilise the meshes into an existing solver is described and an example is used to demonstrate the
benefits of the proposed approach. Next, a novel three dimensional surface mesh generation strategy is presented.
The technique starts with an initial FEM mesh, where elements smaller than the user defined spacing are present
due to CAD model containing small features. A locally enhanced advancing front method is then used to modify
the mesh and ensure that the final mesh contains element sizes that better match the user defined spacing. The
resulting surface mesh contains elements that cross intersection curves of the CAD and exactly retain the original
B–rep. Several examples are presented to show the potential of the proposed technique.
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1. INTRODUCTION

Preparing geometric models suitable for engineering
simulations is known to be a major bottleneck when
dealing with complex geometries. This is caused by
the excessive number of human hours that are required
to transfer the information from a computer aided de-
sign (CAD) model to a suitable computer aided engi-
neering (CAE) model. CAD models frequently involve
a level of detail much greater than that required to
perform a numerical simulation [1].

Over the last two decades, a large e↵ort has been
placed on the research of algorithms for the de–
featuring of complex CAD models [2, 3]. However,
de–featuring cannot be fully automated. First, it is

usually not possible to know, a priori, the e↵ect of
de–featuring on the results of a simulation. Second,
the requirements of the de–featuring depends on the
physics to be simulated. As an example, mesh require-
ments are di↵erent for fluid dynamics, electromagnet-
ics, acoustics, heat transfer or structural mechanics
applications. Finally, de–featuring is also highly de-
pendent upon the level of approximation required. For
instance, the de–featuring required by a viscous tur-
bulent flow simulation is di↵erent to the de–featuring
required by a inviscid flow simulation.

When small geometric features are present in a CAD
model, traditional mesh generators will produce small,
often distorted, elements, when the spacing specified
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by the user is much larger than the size of the small
features. This has a number of implications in the
e�ciency of the solver. Even if high quality elements
can be generated, a large discrepancy in element sizes
might have an impact on the iterative solver used to
solve the large sparse systems that are encountered
with an implicit time integrator. When an explicit
time integrator is used, small elements pose a major
restriction on the size of the time step that can be used
in a numerically stable time marching process.

The virtual topology concept [4] addresses this issue,
by providing the capability to merge topological enti-
ties without introducing any change in the geometry.
This strategy is particularly attractive for high–order
methods, where exploitation of the potential bene-
fits require the use of coarse elements with a high–
order polynomial approximation [5]. However, when
features induce abrupt changes in the normal to the
boundary representation (B–rep), the mesh must be
refined to guarantee accurate and reliable results [6].

In addition, when isoparametric elements are used,
the boundary of the computational domain becomes
an approximation of the true B–rep. Even with high
order methods, the geometric error induced by a poly-
nomial boundary representation can be the dominant
error in a numerical simulation [7, 8].

Isogeometric methods propose a change of basis func-
tions, from polynomial to NURBS, to provide an exact
representation of the domain. However, this requires
a profound change in the way CAD models are under-
stood. Rather than working with the B–rep represen-
tation, as is done by the geometry modelling kernels
embedded in all industrial CAD platforms [9], isoge-
ometric methods require a trivariate NURBS descrip-
tion of the solid domain. Furthermore, isogeometric
methods require the use of small elements when small
features are present in the original CAD model.

The NURBS–enhanced finite element method (NE-
FEM) [10] addresses this problem by completely de-
coupling the concepts of geometric and solution ap-
proximation. These two concepts are tightly coupled
in the large majority of available solvers through the
isoparametric mapping between a well–shaped refer-
ence element and the deformed geometric–fitting el-
ements. With NEFEM, the geometric description of
the boundary uses the B–rep, immediately available in
the CAD model, whereas the approximation of the so-
lution still uses polynomial functions. As a result, the
error due to geometric approximation is completely re-
moved. This concept avoids completely the need for
de–featuring and, at the same time, can use meshes in
which the size of the elements is entirely decided by
the user and is no longer limited by the presence of
geometric features that are smaller than the specified
spacing. The potential of the method has been demon-

strated using academic problems in electromagnetics,
fluids, solids and heat transfer problems [11, 12], but
the application to complex geometries has been ham-
pered by the lack of automatic mesh generation tools.

The technique is particularly attractive in a high–order
context, where the use of coarse curvilinear meshes
is of interest. Here, it is known that a standard
isoparametric formulation can introduce geometric er-
rors that dominate over the solution approximation
error [13, 14].

The development of an automatic mesh generator
for NEFEM in two dimensions was recently reported
in [15]. This paper will present the results of initial
e↵orts made towards the development of a fully au-
tomatic surface mesh generator for NEFEM, where
boundary faces span across multiple surfaces and re-
tain the exact B–rep. The surface mesh genera-
tion process will be detailed, including the new data
structures that have been devised to store the in-
formation required by NEFEM elements. New algo-
rithms, in particular, the local enhanced advancing
front method, have been implemented to fulfil the cre-
ation of boundary faces that span across multiple sur-
faces. Several examples will be presented to show the
potential of the proposed technique.

2. NEFEM FUNDAMENTALS

Let us consider an open bounded domain ⌦ ⇢ Rnsd ,
where nsd is the number of spatial dimensions. The
boundary of the domain is assumed to be described
by a collection of M non–uniform rational B–splines
(NURBS). In two dimensions, each boundary curve is
parametrised as

C : [0, 1] �! C([0, 1]) ✓ @⌦ ⇢ R2
.

Similarly, in three dimensions every boundary surface
is assumed to be parametrised as

S : [0, 1]2 �! S([0, 1]2) ✓ @⌦ ⇢ R3
.

A finite element mesh is usually generated in a hi-
erarchical manner. Given a CAD model, its entities
are classified as zero dimensional points, one dimen-
sional curves, two dimensional surfaces and three di-
mensional volumes. The points of the CAD model are
defined as nodes by the mesh generator. Curves are
discretised using edges, surfaces are discretised using
facets, e.g. triangles or quadrilaterals, and, finally, vol-
umes are discretised using elements, e.g. tetrahedra,
hexahedra, prisms or pyramids. This approach natu-
rally introduces small elements when the CAD model
contains small curves or surfaces.

157



2.1 NEFEM rationale

The key idea of NEFEM [10] is to decouple the con-
cepts of geometric approximation and functional ap-
proximation that are strongly coupled in isoparametric
finite elements and isogeometric methods. The geom-
etry is exactly represented by means of the B–rep that
is readily available in CAD models, while the func-
tional approximation is defined using polynomials, as
in standard finite elements. This introduces a new
type of finite element that requires new quadrature
rules to ensure that the exact B–rep is accounted for
by the solver.

In two dimensions, this new element type is defined
as a triangular element where at least one edge is geo-
metrically defined as a collection of trimmed NURBS
curves. Similarly, in three dimensions, the new ele-
ment type is defined as a tetrahedral element where
at least one face is geometrically defined as a collec-
tion of trimmed NURBS surfaces. This new concept
is illustrated in Figure 1.

Figure 1: Illustration of the generalisation introduced by

the concept of NEFEM elements.

It can be observed that in NEFEM the geometry is
always given by the exact B–rep, independent of the
order of approximation used in the element. In addi-
tion, this figure also shows that a face of an element
can be described using a collection of NURBS, even
with abrupt changes in the normal on a single face.

It is worth noting that NEFEM elements are restricted
to a layer of elements around curved boundaries. The
large majority of elements in a mesh do not have
one edge or face on the boundary, so that a standard
isoparametric FEM approach can be used. This means
that activating this type of element near the boundary
introduces a negligible computational overhead com-

pared to standard finite elements.

2.2 NEFEM solver

To compute the element matrices and vectors required
by any finite element solver, the information usually
stored is the value of the shape functions at the inte-
gration points in a reference element. The incorpora-
tion of the NEFEM concept into an existing solver can
be readily accomplished by devising tailored quadra-
ture schemes for those elements with at least one face
or one edge given by a collection of trimmed NURBS.

To define the numerical quadrature in a NEFEM tri-
angle, a mapping between a rectangle and the triangle
is defined as

 : R �! ⌦e

(�,#) 7�!  (�,#) := (1� #)C(�) + #x3,
(1)

Here, C(�) is the parametrisation of the curved
boundary, which might be given by several NURBS
curves and x3 denotes the interior node. The map-
ping is illustrated in Figure 2 for a triangular element
with one edge defined by five trimmed NURBS curves
The di↵erent colours on the boundary denote the dif-
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Figure 2: Illustration of the NEFEM mapping for a tri-

angular element with one edge defined by five trimmed

NURBS curves.

ferent trimmed NURBS.

This mapping enables the definition of quadrature in
the rectangle R, which decouples the complexity of
the boundary curve (i.e., the rational definition of
NURBS) with respect to the interior direction, #.
In practice a one dimensional Gaussian quadrature is
used in each direction, as discussed in [16].

The mapping in three dimensions follows a similar
principle. A mapping between a polygonal prism and
the NEFEM tetrahedron is defined as

 : R �! ⌦e

(�,,#) 7�!  (�,,#) := (1� #)S(�,) + #x4,
(2)

where S(�,) is the parametrisation of the curved
boundary, which might be given by several NURBS
surfaces, and x4 denotes the interior node. The map-
ping is illustrated in Figure 3 for a tetrahedral element
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with one face defined by three trimmed NURBS sur-
faces.
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Figure 3: Illustration of the NEFEM mapping for a tetra-

hedral element with one face defined by three trimmed

NURBS surfaces.

Once the numerical quadrature is devised, the poly-
nomial shape functions are evaluated at the Gauss
points. In NEFEM this is usually done directly in
the physical space, with Cartesian coordinates. Since
this is the information required by any finite element
solver, this allows the incorporation of the NEFEM ra-
tionale into existing solvers in a transparent manner.

3. 2D NEFEM MESH GENERATION

This section summarises the strategy, originally pre-
sented in [15], for generating triangular NEFEM
meshes. The goal is to motivate the need for a 3D
NEFEM mesh generator, given the promising results
obtained in 2D. The two key requirements for a NE-
FEM element are

1. the characteristic element size is strictly defined
by the user and not related to the size of the
geometric features in the model;

2. the edges that belong to the boundary are ge-
ometrically defined as a collection of trimmed
NURBS curves.

The first requirement will ensure that the smallest el-
ement size is not dictated by the presence of small
geometric features in the CAD model. However, this
requirement implies that the traditional hierarchical
approach used in many mesh generators cannot be fol-
lowed.

3.1 Boundary discretisation

Given the B–rep of a two dimensional domain, a sam-
pling set of points is first defined on the boundary

curves [17]. This distribution of sampling points is
locally refined near small geometric features to en-
sure that the discrepancy between the true geomet-
ric boundary and its piecewise linear approximation is
kept within a specified tolerance.

Once the sampling points are created, the boundary
curves are combined into loops. A loop is defined as
an ordered set of boundary curves, where the shortest
curve is assumed to be first.

Starting from the first curve in a loop, a vertex xi�1

is created and a candidate boundary vertex xi is iden-
tified, such that the distance from xi�1 is given by
the desired spacing. It is worth noting that distances
are computed by traversing over the trimmed curves
forming the loop.

The mesh front formed by vertices xi�1 and xi is
checked to ensure that a valid triangle of the desired
size will be formed when discretising the domain. To
this end, the horizon of a vertex is defined to be the
most distant point on the boundary that can be con-
nected to the vertex using a straight line without in-
tersecting the boundary. The intersection between the
horizons of xi�1 and xi, denoted by P is used to check
the validity of the front. If the distance from the ver-
tices to P is less than the desired spacing, the front
is considered as valid. Otherwise the front is rejected
and the candidate vertex xi is moved towards the first
vertex xi�1. Figure 4 illustrates the process followed
to check the validity of a mesh front.

P

xi�1

xH

i�1

xi

xH

i

Figure 4: Illustration of the check performed to identify

the validity of a mesh front. The super-index H is used

to denote the horizon of a boundary vertex.

It is worth noting that the validity check described
here is introduced to guarantee that the internal edges
of the mesh will be straight. By modifying the
parametrisation of the element, it is possible to relax,
or completely eliminate, this validity check.

3.2 Domain discretisation

The generation of the triangular elements in the do-
main requires accounting for the exact B–rep, to en-
sure that internal edges do not intersect the boundary
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of the domain. To this end, a modification to the ad-
vancing front method is proposed.

Given a mesh front, formed by two vertices x1 and x2,
the intersection of the lines defining the horizon of the
two vertices, P , is defined, as shown in Figure 5.

The angle bisector of the two horizon lines and the
point P define a line where the interior point of the
triangle can be placed. The internal point is defined
as x3 := P +↵v, where v is the direction given by the
bisector of the horizons and ↵ is selected such that
the internal edges of the element do not exceed the
desired element size, as given by the spacing function.
The procedure is illustrated in Figure 5.

P

x1 x2

x3

v

Figure 5: Illustration of modified advancing front

method to build a valid NEFEM triangle.

It is worth noting that the proposed modified advanc-
ing front method can lead to elements that are not
parametrised with the mapping of Equation (2). As
the mapping is only used to define a numerical quadra-
ture for the solver, a strategy to create a composite
quadrature in the element by subdivision is devised
for more complex cases such as the one in Figure 5.
The subdivision is only used for numerical integration
purposes, so no element or nodes are added to the NE-
FEM data structure. Full details on the automatic al-
gorithm to build the quadratures on NEFEM elements
can be found in [15].

3.3 High–order extension

One of the main attractive properties of NEFEM is
the ability to decouple the concepts of geometric and
functional approximation. The exact B–rep is always
embedded in the geometric definition of NEFEM ele-
ments and the degree used for the approximation can
be chosen according to the required accuracy. In this
section, the strategy used to devise a high order nodal
distribution in NEFEM elements is described. This is
the only requirement to allow NEFEM to build arbi-
trary order functional approximations in the new type

of element proposed.

Let us consider a triangular NEFEM element with ver-
tices x1, x2 and x3, where at least one edge is de-
scribed by a collection of trimmed NURBS curves. A
high order nodal distribution of the desired degree can
be easily generated in the auxiliary element given by
the three vertices, by mapping a nodal distribution de-
fined in a reference element. To illustrate the process,
an equally spaced nodal distribution of degree five is
shown in Figure 6.

x3

x2x1

Figure 6: High order nodal distribution defined on the

auxiliary triangle defined by the three vertices.

To obtain the valid high–order nodal distribution in
the actual NEFEM element, an elasticity problem is
formulated. The element is considered to be a lin-
ear elastic solid and Dirichlet boundary conditions are
imposed in the whole boundary. For interior edges a
homogeneous boundary condition is imposed, as in-
ternal edges are assumed straight. For edges on the
boundary, a nodal distribution that satisfies the de-
sired spacing of the high order nodes is generated over
the NURBS curves. The di↵erence between the posi-
tion of the boundary nodes and the respective nodes
in the distribution generated over the straight sided
triangle is used as the Dirichlet boundary condition.
Solving the corresponding elastic problem, the posi-
tion of the internal nodes is computed. Figure 7 shows
the resulting nodal distribution in the NEFEM ele-
ment. It is well known that the linear elastic analogy
may lead to non-valid elements if the deformation im-
posed on the boundary is large. To alleviate this is-
sue, an incremental approach is considered when the
boundary deformation is large.

3.4 Numerical example

To illustrate the benefits following from the use of
NEFEM elements, a two dimensional electromagnetic
scattering example is considered. The problem in-
volves the wave scattering by a section of a satellite
that contains many small geometric features. The
geometry under consideration is shown in Figure 8.
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x3

x2x1

Figure 7: High order nodal distribution obtained after

solving an elemental elasticity problem.

The boundary is made of 139 NURBS curves, where

Figure 8: Geometry of a section of a satellite.

the shortest curve has length 0.01. For this problem
a mesh of size 0.06 su�ces to capture the scattered
wave using cubic elements, meaning that the desired
element size is six times larger than the shortest curve.
It is worth noting that using a standard mesh gener-
ator the smallest element size would be less than or
equal to 0.01 and this would introduce an important
restriction in the time step when using an explicit time
marching algorithm.

Using the proposed mesh generation approach, a NE-
FEM mesh is generated. The proposed elasticity anal-
ogy is then used to extend the mesh to high order. For
this example a nodal distribution to build a functional
approximation of degree four in each element is con-
structed. Two detailed views of the mesh are shown
in Figure 9. The mesh clearly shows the ability of the
method to produce elements with edges described as a
collection of trimmed NURBS. The smallest edge on
the boundary is near 0.04, which is four times larger
than the smallest geometric feature.

The transverse magnetic scattered field, computed

Figure 9: Two detailed views of the NEFEM mesh

around the satellite of Figure 8 showing the high order

nodal distribution.

using an in–house NEFEM high–order discontinuous
Galerkin code, for solving the transient Maxwell’s
equations, is shown in Figure 10.

To assess the quality of the solution computed with
NEFEM, the radar cross section is compared to a ref-
erence solution using low order elements with a mesh
that resolves all the geometric features present in the
CAD model. The NEFEM solution is in excellent
agreement with the reference solution. In addition,
the solution computed with NEFEM achieved conver-
gence, to the time harmonic steady state, 140 times
faster than the solution computed with low order ele-
ments.

This benefit is due to two reasons. First, the NEFEM
mesh has less degrees of freedom, but, more impor-
tantly, the minimum element size is not dictated by
any geometric features. Therefore, the computation
with NEFEM can use a much larger time step, as the
restriction induced by the explicit time marching is
not as severe as that resulting from the use of meshes
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Figure 10: The transverse magnetic scattered field com-

puted with the NEFEM mesh shown in Figure 9.
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Figure 11: Comparison of the radar cross section com-

puted using the NEFEM mesh shown in Figure 9 and a

reference solution.

that resolve all the features.

4. 3D SURFACE NEFEM MESH
GENERATION

This section presents the current e↵ort made towards
the generation of 3D NEFEM meshes, which is focused
on the generation of valid NEFEM surface meshes.

In three dimensions, the sampling of the boundary sur-
faces is not considered to be an e�cient approach be-
cause generating a dense set of sampling points to cap-
ture all the geometric features for complex geometric
configurations could be expensive. Instead, this work
considers an initial mesh generated using a conven-
tional approach. The mesh generator targets a desired
mesh spacing given by a background mesh and a set of
point, line and surface sources. In addition, standard

mesh refinement based on curvature can be activated.
As many available mesh generators, a hierarchical ap-
proach is considered. Points of the CAD model are
considered mesh nodes. Curves of the CAD model
are discretised using edges and the surfaces are discre-
tised using triangles. In this mesh, the characteristic
element size, understood as the smallest height of the
element, in some regions might be much smaller than
the desired element size, due to the presence of small
geometric curves and/or surfaces in the CAD B–Rep.
All the B–Rep geometry models are considered to be
watertight manifold surfaces.

As an example, Figure 12(a) shows the NURBS sur-
faces defining a geometry that consists of a flat plate
intersected by two cylinders. Compared to the length
and width, the thickness of the flat plate is much
smaller. Besides, the diameter is much larger than
the height for the flat cylinder, whereas the height is
relatively larger than the diameter for the tall cylinder.

(a)

(b)

(c)

Figure 12: A flat plate intersected by two cylinders. (a)

B–rep of the domain; (b) FEM surface mesh of the do-

main; (c) FEM surface mesh of the domain, where the

faces in green and red denote the sets f and F respec-

tively.
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The surface mesh obtained using a standard mesh
generator and with a uniform user defined spacing is
shown in Figure 12(b). The presence of small faces,
required to resolve the small features, can be clearly
observed.

The set of boundary faces, F , is subdivided into two
disjoint sets, f and F , of faces with characteristic size
smaller than and complying with, respectively, the
user defined spacing function h(x). Figure 12(c) il-
lustrates the classification of the faces based on their
characteristic element size. Faces shown in green form
the set F of faces that satisfy the desired spacing,
whereas faces shown in red form the set f of faces
with characteristic size smaller than the user specified
spacing function.

This section presents a strategy, named the local en-
hanced advancing front (LEAF) method, to succes-
sively transform the original FEM mesh into a trian-
gular mesh in which elements span across di↵erent sur-
faces until the final set of small faces f is empty. The
aim is to end up with a surface mesh in which the ele-
ment size closely matches the original spacing defined
by the user, irrespective of the presence of small geo-
metric features. The LEAF method is applied to each
vertex along each intersection curves in the model, typ-
ically following the natural order inherited from the
initial mesh. It deals with the vertices involving only
one intersection curve first. Those vertices belonging
to more than one intersection curve are treated after-
wards.

4.1 The LEAF method

Let us consider an intersection curve C such that a
mesh node Pk = C(�k) on C induces a closed triangle
fan, T , that intersects both sets f and F , as shown in
Figure 13(a).

The nomenclature used in Figure 13 and in the re-
maining of this section is summarised in Figure 14.

The intersection curve C subdivides the closed tri-
angle fan T into two triangle fans, namely T :=
{Ti}i=1,...,NT ⇢ F with satisfactory elements and
t := {tj}j=1,...,Nt ⇢ f with small elements. Since the
mesh is generated from a watertight manifold B–Rep
geometry, the condition that T forming a valid closed
triangle fan surrounding Pk requires that

NT +Nt � 3. (3)

This inequality is simply reflecting the fact that a
closed triangle fan cannot be formed with less than
three triangles because the angles of a triangles need
to be strictly less than 180�.

The LEAF method aims at progressively transforming

Figure 13: Illustration of the process of eliminating small

triangles using the LEAF method. The figure shows (a)

the initial patch, (b) and (c) two intermediate steps, and

(d) the updated connectivity.

Figure 14: The legend of all illustrations used in this

paper.

the original triangle fan T into a triangle strip, where
the point Pk is removed and the resulting elements
cross the intersection curve.

Initially, the parametric coordinate of the intersection
curve, �, is used to order the triangles in the triangle
fans T and t, as well as the nodes that belong to the
intersection curve. Next, the first and last triangles in
t are removed, as shown in Figure 13(b). The connec-
tivity of the first and last triangles in T is modified by
substituting the node Pk by the first and last nodes of
the fan t, respectively, as illustrated in Figure 13(c).
Finally, the connectivity of the remaining triangles in
T and t is updated. For a triangle Ti 2 T , the node
Pk is replaced by vi, if vi exists, or by vNt other-
wise. For a triangle tj 2 t, the node Pk is replaced
by Vj�1. This process leads to a triangle strip, as il-
lustrated in Figure 13(d), with no elements in t and
with all the elements crossing the intersection curve.
The procedure is described in the listing shown in Al-
gorithm 1. The procedure described here is applied to
all the triangle fans, in every intersection curve that
contain elements in t, until the set t is empty.

It is worth noting that the case considered here to il-
lustrate the LEAF method considers a point Pk that
belongs to one intersection curve. The algorithm also
handles points that belong to more than one intersec-
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Algorithm 1: Connectivity update routine for the

LEAF method.

1 Sort T and {Vi} in parameter orientation;
2 Sort t and {vj} in parameter orientation;
3 Remove t1 and tNt ;
4 Replace vertex Pk with v1 for T1;
5 Replace vertex Pk with vNt for TNT ;
6 for i 2 to NT � 1 do
7 if i < Nt then
8 Replace vertex Pk with vi for Ti;
9 else

10 Replace vertex Pk with vNt for Ti;
11 end if

12 end for
13 for j  2 to Nt � 1 do
14 if j < NT then
15 Replace vertex Pk with Vj�1 for tj ;
16 else
17 Replace vertex Pk with VNT for tj ;
18 end if

19 end for

tion curve. Similarly, the example considered to illus-
trate the method considers triangular faces that cross
one intersection curve, but the proposed strategy is ca-
pable of producing faces that cross multiple intersec-
tion curves or the same intersection curve more than
once. It is important to emphasise that a NEFEM
surface triangle is defined as a collection of trimmed
NURBS surfaces, so it encapsulates all the geometric
information of the B–rep, including the intersection
curves that it crosses.

4.2 Enhanced edge description

The triangle strips created by the LEAF method re-
move all elements considered to be small. However,
a triangle strip does not conform with the exact B–
rep, because an edge connecting a node Vi and a node
vj crosses an intersection curve and cannot be defined
by two points only. This section introduces the con-
cept of geometric support points (GS–points) that will
be used to define an enhanced edge, i.e. an edge that
crosses an intersection curve.

It is important to emphasise that GS–points are purely
used for an enhanced description of the edges and they
are not extra degrees of freedom in the NEFEM solver.

For a given intersection curve, C, the nodes on the
intersection curve are considered, namely Pk�1, Pk

and Pk+1, where it is worth noting that the point Pk

is no longer present in the surface mesh connectivity.
The parametric coordinate of the first and last points
is denoted by �k�1 and �k+1 respectively.

It can be proved that the number of GS–points to be
created, NG, is equal to the number of edges in the
triangle strip that cross the curve C and is given in
terms of the number of triangles in the triangle fans T
and t as

NG = NT +Nt � 3, (4)

and the condition given by (3) ensures that NG � 0.

A constructive proof of the equality (4) is as follows.
Let us assume that the set of vertices {Vi} and {vj}
are ordered by following the direction of the intersec-
tion curve. To LEAF method requires the construc-
tions of edges connecting these two sets of vertices that
lead to a valid triangulation, i.e. without creating in-
tersections. A simple strategy consists on selecting the
last vertex in the second set, namely vNv and connect-
ing it to all the vertices in the first set. This operation
creates NV edges. To complete the triangulation it
is only necessary to join the vertices {vj}j=1,...,Nv�1

with V1, creating Nv � 1 edges. The total number of
edges, equal to the number of GS–points NG is then
equal to NV +Nv�1. To conclude the proof it is only
necessary to note that NT = NV �1 and Nt = Nv�1.

The GS–points are created by selecting a set of NG pa-
rameters in the interval [(�k�1+�k)/2, (�k+�k+1)/2],
as shown in Figure 15(a), and each intersection point is
associated to one of the edges crossing the intersection
curve. The NEFEM triangles are defined by enhanc-
ing the definition of the edges crossing the intersection
curves, as illustrated in Figure 15(b).

Figure 15: Illustration of (a) creation of GS–points, and

(b) association to NEFEM triangle edges.

It is worth remarking that the progressive use of the
LEAF method is only necessary to update the ele-
ments adjacent to the intersection curves that are con-
sidered small. The resulting mesh inherits the major-
ity of the elements from the original mesh, generated
using a conventional low order mesh generator.

A detailed view of the NEFEM mesh obtained after
applying the LEAF method to the conventional mesh
of Figure 12(b) is shown in Figure 16.

The resulting mesh clearly exhibits the ability of the
proposed method to remove all small elements and
produce a NEFEM mesh where elements with en-
hanced edges cross the intersection curves of the B–
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Figure 16: Detailed view of the NEFEM surface mesh

for the flat plate intersected by two cylinders. Element

vertices and GS–points are shown with dots in yellow and

green, respectively.

rep. However, it can be clearly observed that the
quality of the resulting NEFEM elements is directly
linked to the precise definition of the parametric co-
ordinates to create the GS–points. The next section
presents a simple procedure to improve the quality of
the NEFEM elements.

4.3 Mesh cosmetics

The GS–points used to define the enhanced edges
can be distributed over the intersection curves to im-
prove the quality of the NEFEM elements. If they
are naively equi–distributed in the parametric interval
[(�k�1+�k)/2, (�k+�k+1)/2] the resulting mesh might
have largely distorted elements, as shown in Figure 16.

To adjust the GS–points Gl on an intersection curve
C, a spacing function g(�) is defined in the paramet-
ric space. A natural option is to obtain g(�) by in-
terpolating the spacing field h(x) of the initial FEM
mesh and mapping it back to the parametric space.
Then, the spacing between Gl and Gl+1 is set to fol-
low a distribution specified by g(�l). In practice, given
a GS–point Gl = C(�l), the parameter for the next
GS–point Gl+1 is such that G(�l+1) = 0, where

G(�) := g(�l)�
Z �

�l

kC0(s)k ds. (5)

This inspired by the strategy used to define high qual-
ity nodal distributions in [18]. The non–linear scalar
equation (5) is solved, for l = 1, . . . , NG � 1, using a
bisection method with an adaptive Gaussian quadra-
ture for the numerical evaluation of the integral. For
the example shown in Figure 16, the resulting NE-
FEM mesh after the GS–points are adjusted is shown
in Figure 17(a).

In addition, standard cosmetic processes such as diag-
onal swapping and smoothing can be performed with
routines similar to those used in conventional mesh

Figure 17: Local views of NEFEM surface mesh for the

flat plate intersected by two cylinders. (a) intermediate

result after GS–point adjustments, (b) final result after

diagonal swapping. Element vertices and GS–points are

shown with dots in yellow and green,respectively.

generators. The diagonal swapping strategy imple-
mented locally modifies the connectivity of the NE-
FEM mesh so that the angles of the enhanced trian-
gles are maximised. It is worth noting that the an-
gles of an enhanced triangle must be computed using
the tangent to the enhanced edges by employing the
NURBS description of these edges. The length of the
resulting enhanced edges is also checked to ensure that
the resulting characteristic size of the elements do not
substantially di↵er from the user defined spacing. It
is worth emphasising that the length of an enhanced
edge must be computed using the exact definition of
the boundary and not just the distance between the
vertices. As an example, the resulting surface, after
applying diagonal swapping, is shown in Figure 17(b),
and this clearly illustrates the improved quality ob-
tained.

5. EXAMPLES

This section presents three numerical examples to il-
lustrate the strategy described in the previous section
to generate NEFEM surface meshes in three dimen-
sions.
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5.1 A flat plate with two cylinders

The performance of this strategy, for generating sur-
face NEFEM meshes, is analysed here in detail for the
CAD model shown in Figure 12(a). The geometric
data for this model is listed in Table 1.

Table 1: Geometric data of the flat plate with cylinders

model.

Number of NURBS Surfaces 12
Dimension of the plate 2⇥ 1.143⇥ 0.05
Diameter of Cylinder 1 0.58
Height of Cylinder 1 0.019
Diameter of Cylinder 2 0.183
Height of Cylinder 2 0.281

The desired element size, equal to 0.2, is substantially
larger than many of the features present in the model.
When a mesh of uniform spacing is generated with
a standard mesh generator, the surface mesh shown
in Figure 12(b) is obtained. The mesh contains a num-
ber of elements that are substantially smaller than the
size requested by the user, due to the presence of small
geometric features. For this example, the mesh data
are summarised in Table 2.

Table 2: Surface mesh summary of the flat plate with

cylinders model.

Surface mesh FEM NEFEM
Number of elements 476 302
Number of nodes 240 153
Minimum edge length 0.0095 0.0944
Average edge length 0.1617 0.2043
Desired mesh size 0.2 0.2

After applying the proposed method proposed, the
NEFEM mesh obtained is shown in Figure 18.

A detailed view of the mesh is shown in Figure 18(b).
The surfaces are rendered in di↵erent colours, the ver-
tices are represented with yellow dots and the GS–
points are shown in green. It can be observed that
the location information for intersecting points, among
three (or more) surfaces, is preserved with either a ver-
tex or a GS–point.

The NEFEM faces appear as folded triangles, with the
folding line being the intersection curve between the
surfaces that they cross. For the curved surfaces, the
elements retain the exact B–rep. Therefore, NEFEM
faces are a collection of trimmed NURBS surfaces. It
is worth noting that the proposed algorithms defines

(a)

(b)

Figure 18: NEFEM surface mesh for the flat plate in-

tersected by two cylinders (shown in Figure 12(a)). (a)

Global view, (b) Detailed view with individual surfaces

coloured di↵erently. Element vertices and GS–points are

shown with dots in yellow and green, respectively.

faces with only C0 continuity across the intersection
curves. This is feasible due to the incorporation of the
exact B–rep into the solver, as described in Section 2.2.

The total number of triangular faces and nodes in
the NEFEM surface mesh is 302 and 153 respectively.
More importantly, the minimum element edge length
is 0.0944, which is approximately one order of mag-
nitude higher than that in the original mesh. The
average element edge length is increased from 0.1617
to 0.2043, which is very close to the desired value of
0.2. It is worth noting that some interior triangles on
the top plane have a slightly shorter edge, due to the
fact that they are inherited from the initial FEM mesh
and are never updated.

It can be observed that the element size in the NE-
FEM mesh is totally independent of the thickness of
the plate or of the flat cylinder and the size of the NE-
FEM elements is nearly uniform. This demonstrates
the ability of the proposed method to create a bound-
ary discretisation with desired element size, regard-
less of the small geometric features. To improve the
quantification of the benefit of the proposed approach,
Figure 19 shows histograms of the normalised edge
lengths for both meshes. The histograms clearly show
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Figure 19: Histograms of normalised edge lengths of

FEM and NEFEMmeshes for the flat plate with cylinders.

an increase in the number of elements where the nor-
malised size is close to one in the NEFEM mesh. It
is worth noting that some elements with a normalised
edge length below 0.5 remain in the NEFEM mesh, as
their size is above what is considered a small element.
The current implementation allows the selection of a
threshold value, when classifying the original triangu-
lar mesh into the set of small faces and the set of large
faces.

5.2 A turbine engine fairing

The next example involves the generation of a surface
NEFEM mesh for a turbine engine fairing. The CAD
model, shown in Figure 20(a) and (b), contains four
large surfaces, representing the outer and inner shells,
and six thin and small surfaces, connecting the shells
at the leading and trailing edges. For this model, all
surfaces are curved NURBS surfaces, so that all ele-
ments in the surface mesh must be NEFEM elements
to ensure that the exact boundary representation of
the domain is made persistent during the simulation
stage. The major dimensions of the model are listed
in Table 3. In addition, the curve lengths in the CAD
model vary significantly, e.g. the length of the longest
curve is of more than 50 times that of the shortest
curve. Due to this variation, the initial FEM mesh
contains a number of elements considered too small,
as depicted in Figure 20(c).

Table 3: Geometric data of the fairing model.

Number of NURBS Surfaces 10
Axial length 800
Diameter of inlet 520
Diameter of outlet 103.5

(a) (b)

(c)

(d)

(e) (f)

Figure 20: The turbine engine fairing model. (a) CAD

geometry front view; (b) CAD geometry back view; (c)

FEM mesh with small elements in red; (d) NEFEM mesh.

Detailed views of the NEFEM mesh with individual sur-

faces are coloured di↵erently for (e) leading edge and (f)

trailing edge. Element vertices and geometric support

points are shown with dots in yellow and green, respec-

tively.

This figure shows the elements considered too small
in red, whereas the elements in green have the desired
size. It is worth noting that due to the nature of this
geometry, the elements in red are not only too small,
but they are also highly stretched. This will induce
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challenges for explicit solvers due to the restriction
on the time step and also for implicit solvers due to
the increase in the condition number induced by the
stretched elements and the large discrepancy of ele-
ments sizes in the mesh.

The generated NEFEM surface mesh, obtained using
the proposed method, is shown in Figure 20(d). The
desired mesh size for this model is set as 100.0, which is
much larger than the length of the shortest intersection
curve. As a result, the minimum element edge length
of the FEM mesh is compromised. The mesh data are
summarised in Table 4. Obviously the NEFEM mesh
better respects the specified size.

Detailed views of the NEFEM mesh are shown in Fig-
ure 20(e) and (f) with surfaces coloured individually
and vertices and GS–points rendered. The ability of

Table 4: Surface mesh summary of the fairing model.

Surface mesh FEM NEFEM
Number of elements 343 269
Number of nodes 686 538
Minimum edge length 7.47 48.52
Average edge length 87.69 100.02
Desired mesh size 100 100

the proposed method to produce triangular faces that
cross the intersection curves is clearly observed.

It is worth noting that using the virtual topology
paradigm [4], the surfaces in Figure 20(e) would be
merged as there is a smooth transition of the normal
between the di↵erent surfaces. However, due to the
very localised change of curvature, traditional high-
order elements would only approximate the exact B–
rep. It is also important to emphasise that the bound-
ary representation provided by traditional isoparamet-
ric elements is only C0, so the smoothness of the B–
rep is not preserved in the solver [10]. This is rele-
vant in di↵erent applications. For instance, in stress
analysis, a C0 continuity might lead to a stress con-
centration. In fluid mechanics, corners are known to
introduce non–physical entropy. In electromagnetics,
corners can lead to strong singularities of the electro-
magnetic field. Therefore, the persistence of the true
CAD model in the solver, via the NEFEM approach,
is expected to bring several advantages, not only in
terms of e�ciency but also in terms of reliability of
the results.

The histograms of the normalised edge length for both
the original FEM mesh and the resulting NEFEM
mesh are depicted in Figure 21. The results clearly
show the ability of the proposed method to produce a
mesh in which the majority of elements have an edge
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Figure 21: Histograms of normalised edge lengths of

FEM and NEFEM meshes for the turbine engine fairing.

length very close to the desired size.

5.3 A wing model

The last examples considers the generation of a NE-
FEM surface mesh of a wing with a blunt trailing edge.
The objective of this example is to show the ability
of the method to handle a desired non-uniform mesh
spacing. The NURBS surfaces defining the wing are
represented in Figure 22(a), and the main dimensions
of the model are listed in Table 5. For this model,

Table 5: Geometric data of the wing model.

Number of NURBS Surfaces 4
Span 1200
Length of chord line at root 777.8
Length of chord line at tip 423.3
Maximum aerofoil thickness at root 78.2
Maximum aerofoil thickness at tip 43.9
Height of blunt trailing edge 7.23

a non-uniform spacing function is specified using two
line sources at the leading and trailing edges with a
stretching ratio equal to 5. Despite the refinement in-
troduced by the line sources, the spacing defined by
the user is greater than the length of the shortest in-
tersection curve. The resulting FEM mesh, illustrated
in Figure 22(b), yields small elements at the blunt
trailing edge and the wing tip. Small elements are
shown in red, whereas green elements have the desired
size.

The generated NEFEM surface mesh is shown in Fig-
ure 22(c). It can observed that NEFEM faces of the
desired size contain parts of the trimmed surface that
defines the blunt trailing edge. It can also be seen
that NEFEM elements include parts of the trimmed
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(a)

(b)

(c)

(d)

Figure 22: The wing model with a blunt trailing edge.

(a) CAD geometry; (b) FEM mesh with small elements in

red; (c) NEFEM mesh; (d) Zoomed view of the NEFEM

mesh.

surface that defines the flat tip of the wing.

In this example, the position of the GS–points is com-
puted by using the spacing function induced by the line
sources initially used to generate the FEMmesh, as ex-
plained in Section 4.3. This results in a non-uniform
distribution of the GS–points. A detailed local view
near the leading edge is presented in Figure 22(d).

To conclude, the histograms of the normalised edge
length for both the original FEM mesh and the re-
sulting NEFEM mesh are depicted in Figure 23. It is
worth emphasising that the non-uniform spacing func-
tion is used to normalise the element edge lengths. As
in the previous examples, the proposed technique is
shown to be e↵ective at producing NEFEM elements
with size closer to the desired spacing, contrary to the
original FEM mesh.

6. CONCLUDING REMARKS

A method to produce surface meshes for the NURBS–
enhanced finite element method (NEFEM) has been
presented. The method is capable of generating sur-
face meshes where the exact boundary representation,
given by the non-uniform rational B–splines (NURBS)
of the CAD model, is embedded in the geometric defi-
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Figure 23: Histograms of normalised edge lengths of

FEM and NEFEM meshes for the wing model.

nition of NEFEM elements. The size of the elements in
NEFEM meshes is not restricted by the small geomet-
ric features present in the CAD model. This strategy
completely removes the time consuming process of de–
featuring complex CAD models and, at the same time,
removes the uncertainty generated by the de–featuring
process.

The proposed strategy starts by generating an initial
surface mesh using a standard low-order mesh gen-
erator. In regions with elements much smaller than
the desired spacing, a technique called the locally en-
hanced advancing front (LEAF) method is proposed.
By means of local modifications of the original mesh,
the LEAF method removes all elements considered too
small and introduces NEFEM elements, with faces de-
fined as a collection of trimmed NURBS surfaces. The
resulting NEFEM surface meshes contain elements
that span across multiple surfaces in order to ensure
that the spacing closely matches the user–defined spac-
ing function.

Numerical examples are used to demonstrate the ap-
plicability and potential of the proposed technique.
The examples involve geometries where the CAD
model contain very small edges, such as a wing with a
blunt trailing edge. NEFEM surface meshes are shown
to provide a spacing closely matching the user–defined
spacing function, even when the CAD model contains
small features.

The application of the proposed approach to more
complex geometric configurations requires a number
of developments. First it is necessary to implement
recursively the LEAF method to enable the creation
of NEFEM triangles that cross multiple surfaces. In
addition the surface mesh generation strategy needs
to account for the future creation of the volume mesh.
Despite it is possible to recursively apply the LEAF
method to produce NEFEM surface meshes of more
complex configurations, this might lead to surface
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meshes that cannot be used to create a valid volume
mesh. Therefore, when enhancing the surface trian-
gles, a strategy to ensure that this triangles can be
used to create valid tetrahedra must be devised.

Future work will focus on the improvement of the mesh
cosmetics approach, the definition of new quality met-
rics for NEFEM surface meshes and the extension to
high-order.
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