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ABSTRACT

We propose a new approach for controlling the characteristics of certain mesh faces during optimization of high-order
curved meshes. The practical goals are tangential relaxation along initially aligned curved boundaries and internal
surfaces, and mesh fitting to initially non-aligned surfaces. The distinct feature of the method is that it utilizes
discrete finite element functions (for example level set functions) to define implicit surfaces, which are used to adapt
the positions of certain mesh nodes. The algorithm does not require CAD descriptions or analytic parametrizations,
and can be beneficial in computations with dynamically changing geometry, for example shape optimization and
moving mesh multimaterial simulations. The main advantage of this approach is that it completely avoids geometric
operations (e.g., surface projections), and all calculations can be performed through finite element operations.
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1. INTRODUCTION

High-order finite element (FE) methods are becoming
increasingly important in computational science due
to their potential for better simulation accuracy and
favorable scaling on modern architectures [1, 2, 3, 4].
A vital component of such methods is the use of high-
order representation for the geometry, represented by
a high-order computational mesh. Such meshes are es-
sential for achieving the optimal convergence rates on
domains with curved boundaries/interfaces, symmetry
preservation, and alignment with the physics flow in
moving mesh simulations [5, 6, 7].

In order to fully utilize the benefits of high-order ge-
ometry representation, however, one must be able to
control the quality and adapt the properties of a high-
order mesh. Two common requirements for mesh op-
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timization methods are (1) to fit certain mesh faces to
a given surface representation (see example in Section
4.1), and (2) to perform tangential node movement
along a mesh surface (see example in Section 4.3). This
paper is concerned with these two requirements, in the
particular case when the surface representation is de-
fined by a discrete (or implicit) function without an
analytic parametrization. Common examples of this
scenario include the use of level set functions to repre-
sent material interfaces in multimaterial simulations,
or to represent an evolving geometry in topology and
shape optimization applications.

Aligning mesh faces to curved boundaries through FE-
based variational formulations is a common approach
in the mesh generation literature. A non-exhaustive
list of publications and recent advances on the subject
is given by [8, 9, 10, 11, 12, 13, 14, 15]. The proposed
algorithm in this paper falls into the category of varia-
tional methods that force surface fitting incrementally
through variational penalty terms. These methods en-
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force the surface fitting weakly, thus allowing more
freedom for the boundary nodes and natural tangen-
tial sliding around the surface. Specific examples for
such methods include indirect utilization of the CAD
parametrization through periodic surface projections
[10], and weak enforcement through Lagrange multi-
pliers [15]. The common theme among all of the above
approaches is the use of analytic CAD parametriza-
tion of the surfaces. This paper is explicitly focused
on the case when the surface of interest is known im-
plicitly, i.e., there is no parametrization and the sur-
face is prescribed only through a discrete finite element
function. Other related works in the area of implicit
surface fitting and tangential relaxation include the
DistMesh algorithm that generates a Delaunay trian-
gulation in the domain of interest, followed by solv-
ing for force equilibrium in the Delaunay structure to
obtain a body-fitted linear mesh [16]; Rangarajan’s
method to generate a boundary-fitting triangulation
by trimming a conforming (low-order) mesh and pro-
jecting the boundary vertices of the trimmed mesh to
the desired level set [17]; Chen’s interface-fitted (lin-
ear) mesh generator that uses geometric operations
such as splitting and merging to modify existing ele-
ments in a mesh to align them to an interface [18]; and
Mittal’s distance function-based approach for approx-
imate tangential relaxation for surface nodes [19].

In this paper we propose a new approach that is
applicable to both tangential relaxation and surface
fitting. The mesh optimization problem is formu-
lated as a variational minimization of a chosen mesh-
quality metric, through the Target-Matrix Optimiza-
tion Paradigm [20, 21], with additional penalty terms
that enforce the desired tangential motion and/or sur-
face alignment. These penalty terms connect the con-
cept of mesh motion to the discrete finite element
function that defines the desired node position. The
method utilizes a single objective function for all mesh
nodes, that is, the nodes that are selected for align-
ment move together with all other nodes. As the
penalty terms depend on discrete functions, there is
an interpolation procedure that makes the functions
available on di↵erent meshes [22]. The optimization
method is based on global node movement and does
not alter the topology of the starting mesh.

The main advantage of the proposed approach is that
it completely avoids geometric operations (e.g., surface
projections), and all calculations can be performed
through high-order finite element operations. Thus
the main steps of the method are independent of di-
mension, order of the mesh, and types of elements.
Another benefit is that, unlike most geometric oper-
ations, the FE-based surface fitting terms can be dif-
ferentiated, s.t. there is no need for an outside loop
around the main nonlinear solver. The drawback is
that the notions of alignment and fitting are always ap-

proximate (imposed weakly), and elimination of small
surface features could remain unnoticed by the non-
linear solver. Thus, the method may require addi-
tional modifications in situations that require the ex-
act preservation of certain features, e.g., for represen-
tation of sharp corners in 3D.

The rest of the paper is organized as follows. In Sec-
tion 2 we review the basic TMOP components and
our framework to represent and optimize high-order
meshes. The technical details of the proposed method
for surface fitting and tangential relaxation are de-
scribed in Section 3. Section 4 presents several aca-
demic tests that demonstrate the main features of the
methods, followed by a conclusion in Section 5.

2. PRELIMINARIES

The method presented in this paper is an extension
of our previous work on the TMOP framework for
high-order meshes [20] and its extension to simulation-
driven adaptivity [23]. In this section we summarize
the main concepts and notation that are related to the
understanding of the newly developed algorithms.

The domain ⌦ 2 Rd is discretized as a union of curved
mesh elements of order k. Discrete representation of
these elements is obtained by utilizing a set of scalar
basis functions {w̄i}Nw

i=1 on the reference element Ē.
This basis spans the space of all polynomials of degree
at most k on the given element type (quadrilateral,
tetrahedron, etc.). The position of an element E in
the mesh M is fully described by a matrix xE of size
d ⇥ Nw whose columns represent the coordinates of
the element control points (nodes or element degrees

of freedom). Given xE , we introduce the map �E :
Ē ! Rd whose image is the element E:

x(x̄) = �E(x̄) ⌘
NwX

i=1

xE,iw̄i(x̄) , x̄ 2 Ē, (1)

where we used xE,i to denote the i-th column of xE ,
i.e., the i�th degree of freedom of element E. The
Jacobian Ad⇥d of the mapping (1) at any reference
point x̄ 2 Ē is computed as

AE(x̄) =
@�E

@x̄
=

NwX

i=1

xE,i[rw̄i(x̄)]
T
. (2)

The xE control points of every element are arranged
in a global vector x of size d ·Nx that stores the coor-
dinates of all node positions. Throughout this paper
we exclusively work with global vectors and use the
following notation:

x = (x1 . . . xd)
T
, xa =

NxX

i=1

xa,iwi(x̄), a = 1 . . . d. (3)
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The positions of the mesh nodes are optimized by min-
imizing a global objective function:

F (x) =
X

E2M

Z

Et

µ(T (x))dxt + F�(x), (4)

where Et are user-defined target elements through
their Jacobian matrices Wd⇥d; T = AW

�1 is the
weighted Jacobian matrix from target to physical co-
ordinates, see Figure 1; µ(T ) is a mesh quality met-
ric that defines a measure of the di↵erence between
the target and the physical geometric properties at a
given location. The above configuration is the classical
TMOP setup that is used as a backbone of many other
mesh optimization methods [8, 24]. The term F�(x) is
the subject of this paper and will be discussed in Sec-
tion 3. This term is used to enforce both tangential
relaxation and surface fitting.

The objective function (4) is minimized by solving
@F (x)/@x = 0. This is done by a global nonlinear
solve that modifies all values in x at once. Each itera-
tion is enhanced by a line search procedure to ensure
mesh validity, as described in [25]. Note that we typ-
ically use the Newton’s method, but occasionally we
also employ the limited memory Broyden–Fletcher–
Goldfarb–Shanno (L-BFGS) method. The conver-
gence criterion for the solver is based on the norm of
the gradient of the objective function with respect to
the current and the initial mesh, |rF (x)|/|rF (x0)| 
", and we set " = 10�6 for all the numerical results in
this paper. For the case of Newton, the linear sys-
tem inside each iteration is inverted by the standard
minimum residual (MINRES) algorithm with an l1 -
Jacobi preconditioner.

Figure 1: Schematic representation of the target to phys-

ical transformation in TMOP.

3. ADAPTIVE SURFACE FITTING AND
TANGENTIAL RELAXATION

The main input of the method is a scalar FE function
�0(x0) defined with respect to the initial mesh M0.
The zero level set of this function specifies the surface
of interest. In the following discussion we focus ex-
plicitly on the discrete case, but the method is also
applicable when � is given analytically. The proposed
algorithm is nearly identical for the cases of fitting
and tangential relaxation; we will generally not sepa-
rate the two cases, and the di↵erences between them
will be noted explicitly.

A starting step of the algorithm is to choose a subset
of the mesh nodes, S, which will be constrained on
the zero level set. For the case of tangential relaxation
(when we try to preserve a mesh surface), S is known
by definition, as the surface of interest is defined by
some of the faces of M0. The set S is also known when
one wants to fit boundary faces of a non-aligned initial
mesh. For the case of fitting a non-aligned initial mesh
to an internal surface, however, choosing the set S can
be a nontrivial problem, which we do not address in
this paper. In our fitting tests we choose S through
heuristics related to the shape of interest.

Once the set S is determined, the main idea of the
adaptive surface alignment is to (i) move the mesh in
a manner that leads to �(xs) = 0, for all s 2 S, i.e.,
to place all nodes s 2 S as close as possible to the
zero level set, and (ii) to maintain optimal mesh qual-
ity as defined by the quality metric µ. As there is no
pre-determined unique target position for each node of
S, the method naturally allows tangential relaxation
along the interface of interest. Simple 1D scheme il-
lustration of the approach is shown in Figure 2, where
the mesh node x2 is fitted to the zero level set of �.
For the 2D and 3D cases the level set becomes a curve
and a surface, respectively.

The method is called adaptive, as the optimal mesh

Figure 2: Schematic representation of aligning mesh

nodes to the zero level set of a discrete function.
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positions are obtained from a discrete function that
comes from the simulation of interest. One of the main
di�culties in this case comes from the fact that � is
only defined with respect to the initial mesh. For a
node s 2 S, let xs0 be its position in the initial mesh
M0, and let xs be its corresponding mesh position
in the current mesh M which is evolving during the
optimization. Generally �0(xs0) 6= 0, as the chosen
nodes may not originally be on the zero level set. After
each mesh modification, we recompute a function �(x)
on the new mesh (see additional details in Section 3.2),
so that ideally �(x) = �0(x) for all points x, which
represents equivalence of �0 and � physical space.

Let the FE representation of � be

�(x) =

N�X

i=1

�i�i(x),

where {�}N�
i=1 are the basis functions and N� is the

total number of DOFs of �. We make two important
assumptions about the FE space of �, namely:

• The FE space of � uses interpolatory basis func-
tions, i.e., �j(xi) = �ij for all nodes xi, so that
�(xi) = 0 if and only if �i = 0.

• The FE nodes of � and x coincide. For exam-
ple, if the mesh control points are based on the
Gauss-Lobatto reference positions (as explained
in Section 2), then the FE space of � must be
based on the Gauss-Lobatto positions as well.

If the application provides a � function that does not
satisfy the above, a FE projection operation on an ap-
propriate space can be performed. The above assump-
tions provide a very convenient property, namely, that
minimizing the absolute value of a FE coe�cient �s,
for a node s 2 S, would lead to approaching �(xs) = 0
which would mean that the mesh node xs is near the
zero level set of �; in other words, xs would be aligned
to the surface of interest. This property is used to for-
mulate the penalty term F� in (4).

To incorporate the idea of minimizing �s into the ob-
jective function (4), we first define the restricted FE
function �̄(x), s.t. for each FE coe�cient i we have:

�̄i =

(
�i if i 2 S,
0 otherwise.

(5)

In other words, �̄(x) =
P

s2S �s�s(x). The extra
penalty term in the objective function (4) is formu-
lated as:

F� =
!�

c�

Z

Et

�̄(x)2, (6)

where !� is a user-defined weight, and c� is a normal-
ization constant. The normalization scaling is used

to ensure that F� is invariant with respect to mesh
refinement and scaling of the domain:

1
c�

=

(
1

NE

1
V⌦,avg

= 1
V⌦

for volumetric targets,
1

NE
otherwise,

where NE and V⌦ are the total number of mesh ele-
ments and volume of the domain, respectively. Here
by volumetric targets we refer to the target Jacobian
matrices W that contain volumetric information and
their determinants have unit of volume.

The extra term in the objective function penalizes the
nonzero values of �(xs) for all s 2 S. Minimizing
this term represents weak enforcement of �(xs) = 0,
only for the nodes in S, while ignoring the values of
� for the nodes outside S. Note that minimizing the
final nonlinear objective function F = Fµ + F�, see
(4), would treat all nodes together, i.e., the nonlin-
ear solver would make no explicit separation between
surface and non-surface nodes.

Remark 1 Since the FE basis of x is also interpo-

latory, we can simply assume that the basis functions

of � and x are the same, that is, � ⌘ w. Through-

out the paper we keep both notations to distinguish the

terms related to � from the ones related to the mesh

positions.

3.1 Derivatives

As our default choice for nonlinear optimization is the
Newton’s method, we must compute two derivatives of
F� with respect to the mesh nodes. In this discussion
we’re exclusively targeting the discrete case, when the
level set function �(x) is a discrete FE function. All
derived formulas are also applicable to the analytic
case; a remark about the required modification is given
at the end of the section.

Let the FE expansion for � be �(x) =
P

k �k�k(x),
and let the FE position function be x = (x1 . . . xd)

T

where d is the dimension and each component can be
written as xa =

P
i xa,iwi(x̄). For a node s 2 S, let

xs be its position. As the chosen FE basis is interpo-
latory, we have xs = (x1,s . . . xd,s)

T , and we can write
the following equivalence:

�s = �(xs) =
NxX

k=1

�k�k(xs), since �k(xs) = �ks.

Thus we can rewrite �̄ as

�̄(x) =
X

s2S

�s�s(x) =
X

s2S

NxX

k=1

�k�k(xs)�s(x).

The above formula is useful for derivative computa-
tions. Namely, we have �k(xs) = 0 when k 6= s,
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however, the derivatives @�k(xs)/@x 6= 0. A chain
rule for the above expression (given below) expresses
how the change of the DOF values �(xs) contribute
to the change of the quadrature point values of the re-
stricted FE function �̄(x). The formulas for the first
and second derivatives of F� are the following:

@F�

@xa,i
=

2!�

c�

Z

Et

�̄(x)
@�̄(x)
@xa

@xa

@xa,i

=
2!�

c�

Z

Et

�̄(x)
X

s2S

X

k

�k

✓
@�k(xs)
@xa

�s(x)+

�k(xs)
@�s(x)
@xa

◆
wi(x̄),

@
2
F�

@xb,j@xa,i
=

2!�

c�

Z

Et

✓
@�̄(x)
@xb

@�̄(x)
@xa

+

�̄(x)
@
2
�̄(x)

@xb@xa

◆
@xa

@xa,i

@xb

@xb,i

=
2!�

c�

Z

Et

�
DaDb + �̄(x)D2�

wi(x̄)wj(x̄),

where

D⇤ =
X

s2S

X

k

�k

✓
@�k(xs)

@x⇤
�s(x) + �k(xs)

@�s(x)
@x⇤

◆
,

D2 =
X

s2S

X

k

�k

✓
@�k(xs)
@xa

@�s(x)
@xb

+
@
2
�k(xs)

@xb@xa
�s(x) +

@�k(xs)
@xb

@�s(x)
@xa

+ �k(xs)
@
2
�s(x)

@xb@xa

◆
,

a, b = 1 . . . d, i, j = 1 . . . Nx.

The above integrals are approximated by a standard
Gauss-Lobatto integration rule of order that depends
on the used mesh degree. Note that the above formulas
mix gradients at quadrature points, e.g., @�s(x)/@xa,
and gradients at the nodes of S, e.g., @�k(xs)/@xa.
Furthermore, note that gradients of the basis func-
tions are with respect to physical coordinates, s.t. in-
tegration in reference space would require to compute
r�(x) = A

�Tr�̂(x̄). This leads to more involved
computations of the second derivatives. One possi-
bility to avoid this is to utilize approximate second
derivatives, which are obtained through repeated ap-
plication of the FE discrete gradient operator.

Analytic case. When �(x) is prescribed analytically,
the above formulas still hold with a slight simplifica-
tion. In this case it is more convenient to rewrite the
restricted function �̄(x) as

�̄(x) =
X

s2S

�(xs)�s(x).

Then the first derivative of F� becomes:

@F�

@xa,i
=

2!�

c�

Z

Et

�̄(x)
@�̄(x)
@xa

@xa

@xa,i

=
2!�

c�

Z

Et

�̄(x)
X

s2S

✓
@�(xs)
@xa

�s(x)+

�(xs)
@�s(x)
@xa

◆
wi(x̄),

where all derivatives @�(x)/@xa, a = 1 . . . d are known
analytically. The formulas for the second derivatives
are modified in a similar manner.

3.2 Interpolation Between Meshes

As we always use an iterative method that produces
a sequence of meshes, we need to compute �(x) and
its gradients on any of these meshes. This is straight-
forward when � is given analytically, but in practice,
� is often a discrete function produced by a numerical
simulation. As such, it is only defined with respect
to the initial mesh M0. In these cases the ability to
compute �(x) on an evolved mesh M is a major re-
quirement for the algorithm. An exact equivalence in
physical space would mean to have �(x) = �0(x) for
all points x, but this is not possible due to the discrete
FE representation of these functions.

The reconstruction of � on M can be performed en-
tirely by FE operations. Using the topological equiv-
alence of M0 and M, one can define mesh velocity
v = x� x0 and solve the following advection PDE in
pseudo-time ⌧ 2 [0, 1]:

d�(x⌧ , ⌧)
d⌧

= ur�(x⌧ , ⌧)·, �(x0, 0) = �0(x0),

where x⌧ = x0 + ⌧v. Further details about this pro-
cedure can be found in Section 4.2 of [22].

Another option is high-order interpolation between
meshes in physical space, which is enabled by the
open-source library, gslib [26]. The findpts set of rou-
tines in gslib provide two key functionalities. First, for
a given set of points in physical space, findpts deter-
mines the computational coordinates for each point,
i.e., the element E which contains the point and the
reference-space coordinate x̄ inside the corresponding
reference element Ē. Second, using the computational
coordinates, any given high-order FE function is inter-
polated (1). These two key functionalities allow the
transfer of a high-order FE function from one mesh
onto another. The reader is referred to Section 2.3 of
[27] for further details.

4. NUMERICAL EXAMPLES

In this section we demonstrate the main properties
of the method on several proof-of-concept 2D and 3D
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tests. We start with standard surface fitting tests
on di↵erent element types, followed by treatment of
smooth and non-smooth internal interfaces. Extensive
evaluation of the proposed method on more compli-
cated geometries and practical problems will be per-
formed in future work, as these cases require addi-
tional capabilities that are not established yet in our
software. Nevertheless, the proposed method can be
readily utilized as a building block by other established
mesh optimization frameworks like [8, 24].

Unless notes otherwise, the presented tests utilize the
following composite mesh quality metrics:

µ80 = (1� �)µ2 + �µ77,

µ333 = (1� �)µ302 + �µ316,
(7)

where � = 0.5 and

µ2 = 0.5
|T |2

⌧
� 1, µ77 = 0.5

✓
⌧ � 1

⌧

◆2

,

µ302 =
|T |2|T�1|2

9
� 1, µ316 = 0.5

✓
⌧ +

1
⌧

◆
� 1,

where |T | and ⌧ are the Frobenius norm and deter-
minant of T , respectively. The metric µ80 is a 2D
shape+size metric, while µ333 is a 3D shape+size met-
ric. Both are polyconvex in the sense of [28, 29],
i.e., the metric integral Fµ in (4) theoretically has a
minimizer. A thorough investigation of the theoret-
ical properties of the above (and many other) mesh
quality metrics and metric types can be found in [30].
Exploring how the smoothness properties of � a↵ect
the convexity properties of the full objective function
F = Fµ + F� will be the subject of future studies.

Our implementation utilizes the MFEM finite element
library [3]. This implementation is freely available at
https://mfem.org.

4.1 2D Surface Fitting

As a first example, we perform surface fitting to 3rd
order 2D meshes consisting of quads and triangles, see
Figure 4. For both meshes we use TMOP with tangen-
tial relaxation and fitting capability (4)-(6) to adapt
the internal interface to the zero level-set of a function.
The zero level-set of the function � is defined such that
it is located at a distance of 0.3 from the center of the
domain, xc = (0.5, 0.5), see Figure 3. Although this
level set is known analytically, the presented compu-
tations represent and use � as a discrete finite element
function.

For both meshes we set w� = 1000. The target matrix
T is chosen to represent an ideal element (square or
equilateral triangle), and we use the shape-only metric

µ58(T ) =
|T t

T |2

⌧2
� 2|T |2⌧ + 2.

Figure 3: Level set function � that is used for the 2D

surface fitting tests.

Figure 4: Initial quadrilateral / triangle meshes and in-

ternal interfaces for the 2D surface fitting tests.

The optimized meshes are shown in Figure 5. For
the quadrilateral case, the TMOP objective function
F (x) decreases by 61.8%; for the triangular case, F (x)
decreases by 71.9%. For each of the optimized meshes,
we also measure the average error for the degree-of-
freedoms associated with the material interface as

eS =

P
s2S

✓
||(xs � xc)||2 � 0.3

◆2

P
s2S 1

, (8)

where S is the set of nodes chosen to align to the
interface, xs denotes the physical-location of the node
s, and || · ||L2 denotes the L2-norm of a vector. We
observe that the average error at the zero-level set is
O(10�6) for each of the meshes.

Figure 5: Optimized quadrilateral and triangle meshes

for the 2D surface fitting tests.
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4.2 3D Surface Fitting

Next we consider the analogous 3D case and perform
surface fitting to 2nd order 3D meshes consisting of
hexes and tets. Figure 6 shows a sliced-view of the
meshes, where the element colors denote the two sides
of the internal interface. For both meshes the zero
level set of the function � is at a distance of 0.3 from
the center of the domain xc = (0.5, 0.5, 0.5). We set
w� = 1000. The target matrix T is chosen to represent
an ideal element (cube or equilateral tetrahedron) with
size target based on the size of the elements in the
original mesh. The mesh quality is controlled by the
polyconvex shape+size metric µ333(T ).

The optimized meshes are shown in Fig. 7. For the
mesh with hexahedral elements, we observe that F (x)
reduces by 91.4%, and the error at the zero level-set
(8) is O(10�5). For the mesh with tetrahedrons, F (x)
reduces by 78.7%, with eS = O(10�6). The error at
the zero level-set is relatively higher for the mesh with
hexahedral elements due to the mesh topology. The
hex mesh has elements that have more than one face
at the material interface, which would have to tangen-
tially flatten along the zero level-set to exactly satisfy
the surface fitting term (6). Since this would result
in an inverted mesh, the mesh optimizer fits the mesh
the best it can while ensuring mesh quality based on
the metric µ333(T ) used in the first term of (4).

Figure 6: Initial hexahedral / tetrahedral meshes and

internal interfaces for the 3D surface fitting tests.

Figure 7: Optimized hexahedral and tetrahedral meshes

for the 3D surface fitting tests.

4.3 Taylor-Green Interface

The primary target application of our work are multi-
material moving mesh simulations. In this context, a
common goal of the mesh optimization procedure is to
improve the mesh while preserving an initially aligned
material interface. In this example we start with a 3rd
order mesh and a material interface obtained from a
Taylor-Green moving mesh simulation [31]. The level
set function �(x) is shown in Figure 8; the initial mesh
is shown in the top left panel of Figure 9.

We compare results from three di↵erent setups,
namely (i) fixing the interface nodes during the op-
timization, (ii) tangential relaxation with w� = 250,
and (iii) tangential relaxation with w� = 1000. The
decrease in the objective function and the interface po-
sition errors are listed in Table 1, while the optimized
meshes for the three cases are shown in Figure 9. In
all cases the mesh quality is controlled by the quality
metric µ80, and the target Jacobians represent ideally
shaped elements that maintain their initial local size.
Since � is not known analytically, the interface posi-
tion errors are defined with respect to the violation of
the zero level set:

Eavg =
1
|S|

X

s2S

�̄(xs), Emax = max
s2S

�̄(xs).

Approach F decrease Eavg Emax

Fixed interface 34.4% 0 0
w� = 250 51.4% 8.2e-2 1.3e-1
w� = 1000 42.6% 3.6e-2 6.4e-2

Table 1: Comparison of optimization strategies for the

2D Taylor-Green test.

We observe that the parameter w� has the expected
influence on the fitting accuracy, namely, increasing
its value leads to better agreement with the zero level
set of �. On the other hand, smaller values of w�

give more freedom to the interface nodes, leading to
better mesh quality at the price of increased error of
the interface positions. Finally, completely fixing the
interface nodes gives the lowest quality mesh, as the
optimizer has no control over the interfacial nodes.

The 3D version of the same problem is presented in
Figure 10, where we show cuts (along the material
interface) of the initial mesh and the optimized mesh
with w� = 1000. The 3D comparison between the
above three optimization strategies is listed in Table
2. The 3D results confirm the observations made in
the 2D tests.
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Figure 8: Level sets of the finite element function �(x)
for the material interface arising in the Taylor-Green test.

Figure 9: Top row: initial mesh (left) and optimized

mesh with fully constrained interface nodes (right). Bot-

tom row: optimized mesh with w� = 250 (left) and

optimized mesh with w� = 1000 (right).

Approach F decrease Eavg Emax

Fixed interface 54.5% 0 0
w� = 250 72.7% 4.9e-2 1.5e-1
w� = 1000 63.6% 1.7e-2 6.2e-2

Table 2: Comparison of optimization strategies for the

3D Taylor-Green test.

4.4 Rayleigh-Taylor Interface

Next we consider the Rayleigh-Taylor two-material
problem [6], where the dynamics of the system leads
to an interface that is not smooth. The goal of this
test is to demonstrate the behavior of the method for
non-smooth surfaces that contain fine local features.
The initial 2nd order mesh and the level set function
�(x) are shown in Figure 11.

Figure 10: Initial mesh (top) and optimized mesh with

w� = 1000 (bottom) for the material interface arising in

the 3D Taylor-Green test.

Again we utilize the µ80 quality metric and the tar-
get Jacobians represent ideally shaped elements that
maintain their initial local size. Optimizing the mesh
by exactly preserving the positions of the interfacial
nodes leads to a 38.6% decrease in the objective func-
tion F (x), while optimizing with w� = 1.0e4 leads to
a decrease of 52.5%, with Eavg = 9.9e-3 and Emax =
4.4e-2. The final optimized meshes for the two cases
are shown in Figure 11.

The above results demonstrate that the proposed
method can lead to di↵usion of small surface features,
even when w� is large. The reason is that the interface
nodes s 2 S are allowed to move anywhere where the
function �(xs) is small, as long as they improve the
mesh quality µ(x) in their local neighborhood. Thus,
small interface kinks as the ones visible in the left panel
of Figure 11 can be eliminated without any significant
resulting penalization in F�. This behavior can be
mitigated by detecting the local features of the sur-
face, e.g., by examining the gradients of �, and per-
forming localized treatments. For example, one can fix
only specific nodes or increase the resolution around
the feature by adapting the local size through r- or
h-adaptivity [25]. Another approach to address the
non-smoothness of � is to replace the function by Nc

smooth component functions �1 . . .�Nc , and have a
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Figure 11: Left to right: initial mesh, optimized mesh

with fully constrained interface nodes, optimized mesh

with w� = 1.0e4, and level sets of the finite element

function �(x) for the 2D Rayleigh-Taylor test.

separate objective term for each smooth component in
(4). This strategy can be seen as the discrete analogy
of the virtual geometry surface decomposition models
[15]. Exploring the above strategies will be the subject
of future work.

The 3D version of the same problem is presented in
Figures 12 and 13, where we observe behavior simi-
lar to the 2D case. Optimizing the mesh by exactly
preserving the positions of the interfacial nodes leads
to a 51.5% decrease in the objective function F (x),
while optimizing with w� = 1.0e4 leads to a decrease
of 62.9%, with Eavg = 8.8e-3 and Emax = 3.8e-2.

Figure 12: Initial mesh and cut of the level set function

�(x) for the 3D Rayleigh-Taylor test.

Figure 13: Optimized mesh with fully constrained inter-

face nodes (top) and optimized mesh with w� = 1.0e4

(bottom) for the material interface arising in the 3D

Rayleigh-Taylor test.

5. CONCLUSION

We have presented a new approach to fit or align
certain high-order mesh faces to a surface given by
a discrete level set function. The alignment is im-
posed weakly by including a variational penalty term
in the objective functional. The main advantage of
the method is that its major steps can be implemented
strictly through finite element operations without per-
forming any geometric calculations, making the algo-
rithm independent of dimension, mesh order, and el-
ement type. The main disadvantage of the algorithm
is that local non-smooth surfaces may be di↵used in
the optimization process. Improving this aspect of the
method will be future work, as discussed in Section 4.4.

In the future the method will also be extended to
handle the case of boundary fitting, which is not ad-
dressed in this paper. This will likely be approached
by utilizing an auxiliary background mesh. Extensive
evaluation of the proposed method on larger problems
with complicated geometries will also be performed,
which will require robust strategies for combining sev-
eral level set functions and more involved node mark-
ing algorithms.
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