
EFFICIENT APPROXIMATION OF OPTIMAL
TRANSPORTATION MAP BY POGORELOV MAP

Dongsheng An
1

Na Lei
2B

Wei Chen
2

Zhongxuan Luo
2

Tong Zhao
3

Hang Si
4

Xianfeng Gu
1

1Stony Brook University, NY, U.S.A. {doan, gu}@cs.stonybrook.edu
2Dalian University of Technology, Liaoning, China. {nalei, zxluo}@dlut.edu.cn,

wei.chen@mail.dlut.edu.cn
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ABSTRACT

Optimal transportation (OT) finds the most economical way to transport one measure to another and plays an im-
portant role in geometric modeling and processing. Based on the Brenier theorem, the OT problem is equivalent to
the Alexandrov problem, which is the dual to the Pogorelov problem. Although solving the Alexandrov/Pogorelov
problem are both equivalent to solving the Monge-Ampère equation, the former requires second type boundary condi-
tion and the latter requires much simpler Dirichlet boundary condition. Hence, we propose to use the Pogorelov map
to approximate the OT map. The Pogorelov problem can be solved by a convex geometric optimization framework,
in which we need to ensure the searching inside the admissible space. In this work, we prove the discrete Alexandrov
maximum principle, which gives an apriori estimate of the searching. Our experimental results demonstrate that the
Pogorelov map does approximate the OT map well with much more e�cient computation.

Keywords: Optimal transport, Monge-Ampère equation, Pogorelov problem, Alexandrov maximum

principle

1. INTRODUCTION

Recently, optimal transportation has become one of
the fundamental tools in geometric modeling and pro-
cessing, since it can find the most economical way to
transfer one probability measure to another, and mea-
sure the Wasserstein distance between the measures.
It has been applied for area-preserving parameteriza-
tions [1], 3D surface registration and comparison [2],
medical image registration [3] and so on. It has been
applied broadly in generative models in deep learn-
ing, e.g. WGAN [4], where the generator computes
the optimal transportation map, and the discrimina-
tor calculates the Wasserstein distance. It is also used
for reflector and refractor design in optics field [5, 6].

1.1 Brenier Problem, Alexandrov Problem
and Pogorelov Problem

According to Brenier’s theory [7], the optimal trans-
portation map, under the quadratic Euclidean dis-
tance cost function, is the gradient map of a convex
function, the so-called Brenier potential. The Brenier
potential satisfies the Monge-Ampère equation. Re-
cently, [8] point out that the Brenier theorem is equiv-
alent to the classical Alexandrov theorem in convex
geometry. The Alexandrov theorem states that a con-
vex polyhedron is fully determined , uniquely up to a
vertical translation, by its face normals and face areas.
The Alexandrov polyhedron is in fact equivalent to the
graph of the Brenier potential. The famous Pogorelov
problem can be treated as the Legendre dual to the
Alexandrov problem, which claims that a convex poly-
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hedron is determined by the discrete curvature at the
given points.

The Brenier optimal transportation problem (or equiv-
alently the Alexandrov problem), and the Pogorelov
problem are reduced to solving the Monge-Ampère
equation with di↵erent boundary conditions. Sup-
pose the source measure is dµ = f(x)dx with the sup-
port ⌦ ⇢ Rd and the target measure is d⌫ = g(y)dy
with the support ⌦⇤

2 Rd, the Briener potential is
u : ⌦ ! R, which satisfies the Monge-Ampère equa-
tion with the second type boundary condition:

detD2
u =

f(x)
g � ru(x)

, s.t.ru(⌦) = ⌦⇤
.

We call the solution u to the Pogorelov problem as
the Pogorelov potential, its gradient is called the
Pogorelov map. The Pogorelov potential also satis-
fies the Monge-Ampère equation but with the Dirich-
let boundary condition,

u(x) = h(x), 8x 2 @⌦.

The Dirichlet boundary condition is much easier than
the second type boundary condition, hence Pogorelov
problem can be solved more e�ciently. Since the
boundary @⌦ has zero measure, the Pogorelov map is
also measure-preserving, and can replace the optimal
transportation maps for many applications in practice
for its e�ciency and simplicity.

1.2 Discrete Alexandrov Maximum Princi-
ple

The work of [8] generalizes the Brenier theory to the
discrete setting, which leads to a geometric variational
algorithm to solve these problems. The algorithm op-
timizes a convex energy within a convex admissible
solution space.

Fig. 1 shows an area-preserving parameterization ex-
ample using this method.

The algorithm starts with an initial temporary solu-
tion. At each step, the algorithm finds a temporary
solution uk and the update direction dk using New-
ton’s method. Then we set an initial step length � and
update the temporary solution to uk+1  uk+�dk. If
uk+1 exceeds the admissible space, the algorithm cuts
the step length to a half �  �/2. We then adjust
uk+1 accordingly, and verify again whether uk+1 is in
the admissible space. This “damping process” is re-
peated until the updated temporary solution uk+1 is
admissible. The damping procedure is the most time
consuming step in the whole algorithm pipeline.

In the theory of Monge-Ampère equation, a priori es-
timate is an estimate for the size of a solution or its
derivatives by the source and target measure, the ge-
ometry of the source and the target domain, without

solving the PDE. If one has a priori estimate at the
beginning, during the optimization the algorithm can
utilize the estimate to restrict the range of the tempo-
rary solution, verify the admissibility of the temporary
solution, hence improve the e�ciency and robustness.
The Alexandrov maximum principle is one of the most
important priori estimate in the Monge-Ampère equa-
tion theory.

1.3 Contributions

In this work, we focus on solving the Pogorelov prob-
lem and proving the discrete version of the Alexan-
drov maximum principle, which is further used to im-
prove the computational e�ciency of the proposed al-
gorithm:

1. We develop a practical and e�cient algorithm
to solve the Pogorelov problem. The Pogorelov
maps can be applied as a good approximation of
the optimal transportation maps.

2. We generalize the classical Alexandrov maximum
principle from the smooth setting to the discrete
setting in theorem 3.5, and use it to improve the
e�ciency of the proposed algorithm.

3. We also conduct numerical experiments to test
the e�ciency of our algorithm when solving the
Pogorelov problem, and verify the discrete ver-
sion of the Alexandrov maximum principle.

The work is organized in the following way: in sec-
tion 2, we briefly review the theory, computational
algorithms and direct applications of optimal trans-
portation maps; in section 3, we briefly recall the Bre-
nier theorem in optimal transportation, the Alexan-
drov and Pogorelov theorems in convex geometry, and
the geometric variational theorem. Then we prove the
discrete Alexandrov maximum principle and formulate
it as theorem 3.5; in section 4, we explain the details
for solving the Pogorelov problem utilizing the Alexan-
drov maximum principle; the experimental results are
reported in section 5. Finally the work is concluded in
section 6.

2. RELATED WORK

This section briefly reviews the theory, algorithms and
applications of optimal transportation. We refer read-
ers to [9, 10] for a comprehensive review of the theory
and [11] for computational algorithms.

2.1 Theory

Monge raised the optimal transportation map prob-
lem as finding the most economical way to transfer
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(a). The original surface (b). Area-preserving (c). The Brenier (d). The Legendre
parameterization potential u dual u⇤

Figure 1: The area-preserving parameterization based on optimal transportation map. (a) shows the original Buddha

surface (S,g). The surface is conformally mapped onto the unit disk ' : (S,g) ! D2
. The mapping pushes forward

the surface area element to a measure ⌫ on D2
. The optimal transportation map is calculated T : (D2

, µ) ! (D2
, ⌫),

where µ is the uniform distribution. (c) shows the Brenier potential u : D2
! R, T = ru. (d) shows the Legendre dual

u
⇤(y) = sup

x2D2{hx, yi � u(x)}.

one measure to the other in [12]. Kantorovich relaxed
the transportation maps to transportation plans and
solved the problem using linear programming [13, 14].
Brenier [7] discovered that the OT map is the gradi-
ent of a convex function, which satisfies the Monge-
Ampère equation. Benamou-Brenier [15] developed
the theory for solving OT maps using fluid dynamics.
Comprehensive theories on optimal transportation can
be found in [10, 16] and so on.

2.2 Algorithms

There are many methods for solving the optimal trans-
portation problem, which can be classified into three
main categories: Kantorovich approach, Brenier ap-
proach and Fluid dynamics approach.

The first approach is based on Kantorovich theorem,
the optimal transportation problem is solved by us-
ing linear programming. De Goes [17] proposed the
point-to-simplex algorithm which is similar to linear
programming. Sinkhorn [18] method added an entropy
regularizer to the Kantorovich prime problem and
greatly improved the computational e�ciency. The
heat kernel was later used in [19, 20] to approximate
the Wasserstein distance.

The second approach is based on the Brenier theorem,
and the Brenier potential can be found by geometric
optimization. Aurenhammer et al. [21] connected the
OT map with power diagram in computational geom-
etry. Then Gu et al. [8] connected the Brenier theory
and the Alexandrov theory together, and proposed a
geometric variational approach to solve the OT prob-
lem. De Goes et al. found the equivalence between
capacity-constrained Voronoi tessellation and the OT
problem in [22]. Levy [23] and Merigot et al. [24] pro-
posed multi-scale approaches to accelerate the com-
putation based on the Brenier theory for large-scale

optimal transportation problems. The computational
optimal transportation methods through solving the
Monge-Ampère equation have been generalized to the
spherical cases by [5, 6, 25].

The third approach is based on Fluid dynamic the-
ory. Benamou and Brenier developed a method [26] to
solve the Monge-Ampère equation by minimizing the
kinetic energy of flow field. Haker and Tananbaum [3]
developed a method to compute the OT maps using
fluid dynamics by removing the curl component from
the vector field. However, it is still unclear whether
Haker’s method can obtain the optimal transportation
map for high dimensional cases.

2.3 Direct Applications

The optimal transportation has been used for the fol-
lowing applications: 2D shape reconstruction and sim-
plification in [17], deformable 3D surface registration
in [2], area-preserving surface parameterization [27],
volume-preserving parameterization [28] and spheri-
cal texture mapping in [29]. The OT maps can also be
applied for medical image registration [30], where the
pixel intensity functions are treated as measure densi-
ties, area-preserving brain mappings [31], [32] and so
on. Also, the OT maps can be used for virtual mag-
nifier [1] and blue noise processing [22]. Furthermore,
OT maps can be applied for reflector and refractor
design [6, 33, 5], [34] and [35]. Optimal transporta-
tion also plays an essential role in deep learning field
related to generative models [36, 37, 38, 39, 40, 41].

In most of the above applications, the optimal trans-
portation maps can be replaced by other measure-
preserving maps. The Pogorelov map is a good candi-
date due to its computational simplicity and e�ciency.
Currently, most existing algorithms aim at solving the
optimal transportation problem, or equivalently the
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Alexandrov problem, and few of them choose to tackle
the Pogorelov problem. In contrast, our work in this
paper focuses on solving the Pogorelov problem. Fur-
thermore, we haven’t found any existing works that
utilize the Alexandrov maximum principle in the ge-
ometric modeling and processing fields, which is an-
other focus of the current work.

3. THEORETICAL FOUNDATION

In this section, we briefly review the theoretical foun-
dation of optimal transportation and convex geometry,
including the Brenier theorem, the Alexandrov theo-
rem, and the Pogorelov theorem. We then prove the
discrete version of the Alexandrov maximum principle.

3.1 Optimal Transportation

Suppose ⌦,⌦⇤
⇢ Rd are domains in an Euclidean

space, with probability measures µ and ⌫ respectively
satisfying the equal total mass condition: µ(⌦) =
⌫(⌦⇤). The density functions are dµ = f(x)dx and
d⌫ = g(y)dy. The transportation map T : ⌦ ! ⌦⇤ is
measure preserving, if for any Borel set B ⇢ ⌦⇤,

Z

T�1(B)

dµ(x) =

Z

B

d⌫(y),

denoted as T#µ = ⌫. Monge raised the optimal trans-
portation problem: given the transportation cost func-
tion c : ⌦⇥⌦⇤

! R+, find a measure preserving map
T : ⌦ ! ⌦⇤ that minimizes the total transportation
cost,

(MP ) min

⇢Z

⌦

c(x, T (x))dµ(x) : T#µ = ⌫

�
.

The above equation gives the Monge problem (MP)
and the minimizer is called the optimal transportation
map (OT map). The transportation cost of the OT
map is called the OT cost between the measures.

Theorem 3.1 (Gu et al. [7]). Suppose the measures
µ and ⌫ are with compact supports ⌦,⌦⇤

⇢ Rd respec-
tively, and they have equal total mass µ(⌦) = ⌫(⌦⇤).
Assume the corresponding density functions are given
by f, g 2 L

1(Rd), and the cost function is c(x, y) =
1
2 |x� y|

2, then the optimal transportation map from µ

to ⌫ exists and is unique. It is the gradient of a convex
function u : ⌦! R, the so-called Brenier potential, u
is unique up to adding a constant, and the OT map is
given by T = ru.

If the Brenier potential is C2, then by measure preserv-
ing condition, it satisfies the Monge-Ampère equation,

detD2
u(x) =

f(x)
g � ru(x)

, s.t.r(⌦) = ⌦⇤
, (1)

where D
2
u is the Hessian matrix of u and the unique

OT map is given by T = ru.

3.2 Geometric Variational Method

If u is not smooth, we can still define the Alexandrov
solution. The sub-gradient of a convex function u at
x is defined as

@u(x) :=
n
p 2 Rd : u(z) � hp, z � xi+ u(x), 8z 2 ⌦

o

The sub-gradient defines a set-valued map: @u : ⌦ !
⌦⇤, x 7! @u(x). We can use the sub-gradient map to
replace the gradient map in the Monge-Ampère equa-
tion Eqn. (1), and define the Alexandrov Solution as
follows:

Definition 3.1 (Alexandrov Solution [42]). If a con-
vex function u : ⌦ ! R satisfies the equation
(@u)#µ = ⌫, or equivalently µ((@u)�1(B)) = ⌫(B),
for all Borel set B ⇢ ⌦⇤, then u is called an Alexan-
drov solution to the Monge-Ampère equation Eqn. (1).

The Alexandrov problem aims at finding a convex
polyhedron with prescribed face normals and face ar-
eas. In smooth case, the Alexandrove problem finds
the convex surface with prescribed Gaussian curva-
ture. Both the Alexandrove problem and the Bre-
nier problem are governed by the same Monge-Ampère
equation. Therefore, solving the Alexandrov prob-
lem is equivalent to computing the Brenier potential,
which is given by the Alexandrov Solution. The work
of [8] proves a geometric variational approach for com-
puting the Alexandrov solution of the semi-discrete
optimal transportation problem.

3.3 Semi-discrete Optimal Transportation

As shown in Fig. 2, suppose the source measure is
(⌦, µ), ⌦ is a compact convex domain with non-empty
interior in Rd, the density function f(x) is continuous.
In practice, the target measure (⌦⇤

, ⌫) is usually dis-
cretized as ⌫ =

P
n

i=1 ⌫i�(y � pi), where p1, . . . , pn ⇢

Rd are distinct n points and ⌫1, . . . , ⌫n > 0 so thatP
n

i=1 ⌫i = µ(⌦). In this situation, the discrete Brenier
potential is a piecewise linear convex function. In fact,
there exists a height vector h = (h1, . . . , hn) 2 Rn,
so that the upper envelope uh of the hyper-planes
⇡i(x) := hx, pii+ hi defined as

uh(x) =
n

max
i=1

{hx, pii+ hi}, (2)

gives the discrete Brenier potential,as shown in the
top frame of Fig. 2(c). The projection of the envelope
Env({⇡i}

n

i=1) induces a power diagram (the bottom
frame of Fig. 2(c)),

Rd =
n[

i=1

Wi(h), Wi(h) := {x 2 Rd : ruh = pi}.

The µ-volume of each cell µ(Wi(h)\⌦) = ⌫i, the semi-
discrete optimal transportation map is given by ruh,
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(a) Source measure (b) Target measure (c) Upper envelope (d) Convex hull
(⌦, µ) {(pi, ⌫i)}

n

i=1 Env(⇡i(x)) Conv({(pi,�hi)}
n

i=1)

Figure 2: (a) The continuous source domain ⌦ is with uniform distribution µ. (b) The discrete target measure is

⌫ :=
P

n

i=1 ⌫i�(y � pi) with pis the vertices. (c) The Brenier potential u : ⌦ ! R is the upper envelope of the planes

⇡i(x) = hpi, xi + hi, as shown in the top frame. The cell decomposition induced by the Brenier potential gives the OT

map, each cell Wi in ⌦ (shown in the bottom frame) is mapped to the corresponding pi with µ(Wi) = ⌫i. (d) The

Legendre dual u
⇤
of the Brenier potential u is the convex hull of points {(pi,�hi)}

n

i=1. Please zoom in/out for better

visualization.

or equivalently Wi(h) \ ⌦ 7! pi. The discrete Brenier
potential can be obtained by optimizing the following
convex energy:

Theorem 3.2 (Gu et al. [8]: Alexandrov). Let
⌦ be a compact convex domain in Rd, {p1, ..., pn}

be a set of distinct points in Rd and f : ⌦ ! R
be a positive continuous function. Then for any
⌫1, . . . , ⌫n > 0 with

P
n

i=1 ⌫i =
R
⌦
f(x)dx, there ex-

ists h = (h1, h2, . . . , hn) 2 Rn, unique up to adding a
constant (c, c, . . . , c), so that

µ(Wi(h)\⌦) =

Z

Wi(h)\⌦

f(x)dx = ⌫i 8i = 1, 2, . . . , n.

(3)
The height vector h is exactly the minimal solver of
the convex function

E(h) =

Z h

0

nX

i=1

µ(Wi(h) \ ⌦)dhi �

nX

i=1

hi⌫i (4)

on the open convex set (the admissible solution space)

H = {h 2 Rn
|µ(Wi(h) \ ⌦) > 0, i 2 {1, 2, . . . , n}}

\

(
nX

i=1

hi = 0

)

(5)

Furthermore, the gradient map ruh minimizes the
quadratic cost 1

2

R
⌦
|x � T (x)|2f(x)dx among all the

measure preserving transportation maps T : (⌦, µ) !
(Rd, ⌫ =

P
n

i=1 ⌫i�(y � pi)), T#µ = ⌫.

According to [43], E(h) is continuous and a C
2 func-

tion on the admissible space, since its Hessian matrix
is continuous.

3.4 Convex Geometry

The Brenier potential in the optimal transportation
theory can be reformulated as the classical Alexandrov
problem and the Pogorelov problem, both of them sat-
isfying the Monge-Ampére equation. In the discrete
version, the Alexandrov problem aims at finding a con-
vex polyhedron with user prescribed face normals and
areas.

Theorem 3.3 (Alexandrov 1950). Given a compact
convex domain ⌦ ⇢ Rd, and p1, · · · , pn are distinct
points in Rd, ⌫1, ⌫2, · · · , ⌫n > 0, such that

P
⌫i =

V ol(⌦), there exists a piecewise linear (PL) convex
function

u(x) := max{hx, pii+ hi, i 2 {1, 2, . . . , n}}

unique up to translation such that

V ol(Wi) = V ol({x|ru(x) = pi}) = ⌫i.

The graph of u(x) is called the Alexandrov polyhe-
dron, which is an open convex polyhedron with infinite
boundary faces. Alexandrov’s proof is topological, not
variational. In fact, the Alexandrov potential is ex-
actly the discrete Brenier potential. Hence, theorem
3.2 also gives the solution to the Alexandrov problem.

The Pogorelov problem is very similar to the Alexan-
drov problem, and it is equivalent to solving the
Monge-Ampère equation with the Dirichlet boundary
condition:

detD2
u(x) =

f(x)
g � ru(x)

, s.t. u(x) = h(x) 8x 2 @⌦.

Basically, the supporting planes of the infinite bound-
ary faces of the Alexandrov polyhedron are fixed and
the slopes of the other supporting planes are fixed,
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but their heights can be changed. Given any desired
positive ⌫is, there exists a set of unique heights his,
such that the area of the i-th face equals to ⌫i. Gu et
al. [8] also proved a variational approach to solve the
Pogorelov problem:

Theorem 3.4 (Gu et al. [8]: Pogorelov).
Suppose ⌦ = Conv(v1, · · · , vm) is a d-
dimensional compact convex polytope in Rd so
that vi 62 Conv(v1, . . . , vi�1, vi+1, . . . , vm) for all
i 2 {1, 2, . . . ,m} and p1, . . . , pn are in the interior
of ⌦. For any g1, . . . , gm 2 R and ⌫1, ⌫2, . . . , ⌫n > 0,
there exists a convex cell decomposition T having
vi and pj as vertices and a piecewise linear con-
vex function u : (⌦, T ) ! R so that u(vi) = gi,
i 2 {1, 2, . . . ,m} and the Lebesgue measure of the
sub-gradient of u at pj is ⌫j , j 2 {1, 2, . . . , n}. In
fact, the solution u is the Legendre dual of

max{hx, pji+hj , hx, vii�gi| i 2 {1, 2, . . . ,m}; j 2 {1, 2, . . . , n}}

and h = (h1, h2, . . . , hn) is the unique critical point of
a strictly convex function,

E(h) =

Z h

0

nX

j=1

µ(Wj(h))dhj �

nX

j=1

hj⌫j , (6)

on the open set (admissible solution space)

H = {h 2 Rn
|Wj(h) 6= ;, 8j 2 {1, 2, . . . , n}}. (7)

The detailed di↵erence between the solutions of the
Alexandrov problem and the Pogorelov problem can
be found in Fig. 3.

3.5 Discrete Alexandrov Maximum Princi-
ple

Definition 3.2 (Convex Piecewise Linear Function).
Let P = {p1, p2, . . . , pn} ⇢ Rd be a set of distinct
points, ⌦ := Conv({p1, p2, . . . , pn}) be the convex hull
of P . Given a discrete function u : P ! R, u(pi) is
denoted as ui, it can be extended to a convex piecewise
linear function û : ⌦ ! R. The graph of û is the
convex hull of points {(p1, u1), (p2, u2), . . . , (pn, un)}.

Note that the triangulations of di↵erent piecewise lin-
ear functions are di↵erent. Given two discrete func-
tions u, v : P ! R, if ui < vi, 8pi 2 P , then
û(x) < v̂(x), 8x 2 Conv(P ).

Lemma 3.1 (Monotonicity of sub-gradient). Let P =
{p1, p2, . . . , pn} ⇢ Rd be a set of distinct points, ⌦ :=
Conv({p1, p2, . . . , pn}) be the convex hull of P . Let
{pi1 , pi2 , · · · , pil} ⇢ P , O = Conv({pi1 , pi2 , · · · , pil})
be an open bounded set, and u, v : P ! R be two
discrete functions defined on P , and their extentions,

the convex piecewise-linear functions û, v̂ : ⌦ ! R,
satisfying: ⇢

û = v̂ on @O

û  v̂ in O

Then the images of the sub-gradient maps satisfy

@v̂(O) ⇢ @û(O),

and in particular, µû(O) � µv̂(O), where

µû(E) :=
��
[

x2E

@û(x)
��.

| · | representing the Lebesgue measure.

Proof. Let p 2 @v̂(x) for some x 2 O, then the a�ne
function lx,p(z) := v̂(x) + hp, z � xi touches v̂ from
below at x. Since û  v̂, the constant

a := max
z2Ō

lx,p(z)� u(z)

is non-negative and that lx,p�a touches û from below
at some point x0 2 Ō. There are two cases here:

case 1. x0 2 O, then w := û� (lx,p�a) attains a local
minimum at x0, which is also a global minimum by
the convexity of w, namely

lx,p � a  u in ⌦ lx,p(x0)� a = u(x0),

and p 2 @û(x0) ⇢ @û(O), as desired.
case 2: x0 2 @O. Since û = v̂ on @O and x0 2 @O, we
obtain that a = 0. Therefore,

lx,p  u  v in O.

As lx,p(x) = v̂(x), this gives lx,p(x) = û(x). So lx,p

touches û from below at x and p 2 @u(x), which con-
cludes the proof.

A consequence of the monotonicity result is the dis-
crete Alexandrov maximum principle.

Theorem 3.5 (Discrete Alexandrov Maximum Prin-
ciple). Let P = {p1, p2, . . . , pn} ⇢ Rd be a set of dis-
tinct points, ⌦ := Conv({p1, p2, . . . , pn}) be the convex
hull of P , and let u : ⌦! R be a piecewise-linear con-
vex function such that u = 0 on @⌦. Then there exists
a dimensional constant Cd > 0 such that

|u(x)|d  Cddiam(⌦)d�1dist(x, @⌦)|@u(⌦)| 8x 2 ⌦.
(8)

Proof. Let pi 2 P , (pi, ui) be a point on the graph of
u, and consider the convex cone function y 7! Cpi(y),
with vertex at (pi, ui) that vanishes on @⌦. By the
convexity of u, we have u  Cpi in ⌦. The monotonic-
ity of subdi↵erential 3.1 implies

|@Cpi(pi)|  |@Cpi(⌦)|  |@u(⌦)|; (9)
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In the following, we bound |@Cpi(pi)| from below.

Step 1. @Cpi(pi) contains the ball B⇢(0) with ⇢ :=
|ui|/diam(⌦). Take q with |q| < |ui|/diam(⌦), and
consider the a�ne function

lpi,q(z) := ui + hq, z � pii.

Then we have lpi,q(pi) = ui = Cpi(pi) and

lpi,q(z)  ui+|q||z�pi|  ui+|q|diam(⌦)  0 8z 2 @⌦,

By convexity lpi,q  Cpi inside ⌦. Hence, lpi,q

touches Cpi from below at pi, which implies that
q 2 @Cpi(pi). By the arbitrariness of q, this proves
that @Cpi(pi) � B⇢(0), as desired.

Step 2. @Cpi(pi) contains a vector of norm
|ui|/dist(x, @⌦). Consider a point pj 2 @⌦, such that
|pi � pj | = dist(pi, @⌦), and set

q :=
pj � pi

|pj � pi|

|ui|

dist(pi, @⌦)
.

Then lpi,q(z) := ui + hq, pi � zi satisfies

lpi,q(pj) = ui + hq, pj � pii = ui + |ui| = 0,

and the hyperplane {lpi,q = 0} is tangent to ⌦ at pj .
This implies that lpi,q  0 = Cpi on @⌦. In fact, given
any z 2 @⌦, we have that dist(pi, @⌦)  |z � pi|, so

lpi,q(z)  ui

✓
1�

z � pi

dist(pi, @⌦)

◆
 0.

Arguing as in Step 1, this shows that q 2 @Cpi(pi).

Step 3. By Step 1 and Step 2, we know that

@Cpi(pi) � B⇢(0) [ {q}, (10)

where ⇢ = |ui|/diam(⌦) and |q| = |ui|/dis(pi, @⌦). Let
⌃⇢ denote the intersection of B⇢(0) with the hyper-
plane passing through the origin and orthogonal to q,

⌃⇢ := B⇢(0) \ {z : hz, qi = 0}.

Since @Cpi(pi) is convex, by Eqn.(10) it contains the
cone C generated by q and ⌃⇢. Hence

|@Cpi(pi)| � |C| = Cd|q|⇢
d�1 = Cd

|ui|
d

diam(⌦)d�1dist(pi, @⌦)
,

where Cd > 0 is the dimensional constant, C2 = 1 and

Cd =
1
d

⇡
d�1
2

�( d�1
2 + 1)

Now, assume x is an arbitrary point in ⌦, we can re-
peat the same argument and the inequality (8) still
holds. This concludes the proof.

4. COMPUTATIONAL ALGORITHMS

This section explains the algorithmic details to solve
the Monge-Ampère equation with with the Dirichlet
boundary condition, namely the Pogorelov problem.
The algorithm is implemented using computational ge-
ometric method, hence we start with the fundamental
concepts in computational geometry [44].

4.1 Basic Concepts from Computational
Geometry

A hyperplane in Rd+1 is represented as ⇡(x) := hp, xi+
h, x 2 Rd, h 2 R. Given a family of hyperplanes
{⇡i(x) = hpi, xi+hi}

n

i=1, their upper envelope denoted
as Env({⇡i}

n

i=1) is the graph of the function

u(x) :=
n

max
i=1

{hpi, xi+ hi} .

The Legendre dual of u is defined as

u
⇤(y) := max

x2Rd
{hx, yi � u(x)}.

Each hyperplane ⇡i(x) has a dual point in Rd+1,
⇡
⇤
i := (pi,�hi), and the graph of u⇤ is the lower convex

hull of the dual points {⇡
⇤
i }

n

i=1, which is the minimal
convex set containing {⇡

⇤
i }

n

i=1. The projection of the
upper envelope induces a nearest power diagram D(⌦)
of ⌦,

⌦ =
n[

i=1

Wi(u), Wi(u) := {x 2 ⌦|ru(x) = pi} .

The projection of the lower convex hull u⇤ induces a
nearest weighted Delaunay triangulation T (⌦⇤) of ⌦⇤.
D(⌦) and T (⌦⇤) are dual to each other, namely pi

connects pj in T (⌦⇤) if and only if Wi(u) is adjacent
to Wj(u). Fig. 1 and Fig. 2 show these basic concepts.

4.2 Algorithm Pipeline

The algorithm mainly optimizes the energy E(h) of
Eqn. (6) in the admissible solution space H in Eqn. (7)
using Newton’s method. Assume the interior vertices
are {pi}

n

i=1 and the boundary vertices are {qj}
m

j=1. At
the beginning, the height vector h0 is initialized as
hi = 1

2 (|pi|
2
�1) for each interior vertex pi, and as the

fixed constant gj for each boundary vertex qj respec-
tively. At each step, the convex hull of {(pi,�hi)}

n

i=1[

{(qj ,+gj)}
m

j=1 is constructed. The lower convex hull
is projected to induce a nearest weighted Delaunay
triangulation T of {pi} [ {vj}. Each interior vertex
on the convex hull vi(h) = (pi,�hi) corresponds to a
supporting plane ⇡i(h, x) = hpi, xi + hi, each bound-
ary vertex vj = (qj , gj) corresponds to a supporting
plane ⇡i(h, x) = hqj , xi � gj . Each face [vi, vj , vk] in
the convex hull is dual to the vertex in the envelope,
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which is the intersection point of ⇡i,⇡j and ⇡k. The
lower convex hull is dual to the upper (lower) enve-
lope. The projection of the upper envelope induces
the nearest power diagram. The relationship is given
in Fig. 2(c) and Fig. 2(d).

Algorithm 1: Solving Pogorelov Problem

Input: ⌦ = Conv(q1, q2, . . . , qm), boundary
values
(g1, g2, . . . , gm),{(pi, ⌫i)}

n

i=1 ⇢ ⌦⇥R

Output: The height vector h of the Pogorelov
Polyhedron uh

Initialize u(qj) = gj , hi = 1
2 (|pi|

2
� 1);

while true do

Compute the lower convex hull of
{(pi,�hi)}

n

i=1 [ {(qj ,+gj)}
m

j=1;
Compute the upper envelope of the planes
{hpi, xi+ hi}

n

i=1 [ {hqj , xi � gj}
m

j=1;
Project the upper envelope to the plane to get
a nearest power diagram
⌦ =

S
n

i=1 Wi(h)
S

m

j=1 Uj(h), where Wi(h)’s

are finite, Uj(h)’s are infinite cells;
Compute the µ-volume of each finite cell
wi(h) = µ(Wi(h)) using Eqn. (11);

Compute the gradient of the energy E(h)
using Eqn. (12), rE(h) = (⌫i � wi(h));

if krE(h)k < " then

return h;
end

Compute the µ-lengths of the power Voronoi
edges Wi(h) \Wj(h) ;

Construct the Hessian matrix of the energy
E(h):

Hess(E(h)) :=
@
2
E(h)

@hi@hj

=
µ(Wi(h) \Wj(h))

|pi � pj |

Solve the linear system:
Hess(E(h))d = rE(h);

� 1;
repeat

if h+ �d violates the Alexandrov
maximum principle then

� 
1
2�;

continue;

end

Compute the nearest power diagram
D(h+ �d);

until no empty power cell ;
Update the height vector h h+ �d;

end

Then we compute the µ-volume of each power cell us-
ing

wi(h) :=

Z

Wi(h)

f(x)dx, (11)

and the gradient of the energy Eqn. (6) is given by

rE(h) = (⌫1 � w1(h), ⌫2 � w2(h), . . . , ⌫n � wn(h)).
(12)

The Hessian matrix Hess(E(h)) can be constructed as
follows: for o↵ diagonal elements,

@
2
E(h)

@hi@hj

=
@wi(h)
@hj

=
�1

|pi � pj |

Z

Wi(h)\Wj(h)

f(x)dx = �
µ(ēij)
|eij |

.

(13)
where eij is the edge in the weighted Delaunay tri-
angulation T (h) connecting pi and pj , ēij is the dual
edge in the power diagram D(h); and for diagonal el-
ements,

@
2
E(h)
@h2

i

=
@wi(h)
@hi

=
X

j2N(i)

µ(ēij)
|eij |

. (14)

where N(i) is the set of the neighbours of the ith ver-
tex. Then we solve the following linear system to find
the update direction,

Hess(E(h))d = rE(h). (15)

Finally we need to determine the step length �, such
that h+�d is still in the admissible solution space H,

H = {h 2 Rn
|µ(Wi(h)) > 0, i = 1, 2, . . . , n}. (16)

We initially set the step length � to be �1, if h+ �d

violates the Alexandrov maximum principle, then we
cut � to a half, � 1/2�, and iterate again. Then we
further compute the power diagramD(h+�d). If some
cells disappear in the power diagram, meaning h+�d

exceeds the admissible space, then we cut � by half
and iterate again. We repeat this process, until we find
an appropriate step length � so that h + �d is in the
admissible space (Eqn. (7)) and satisfies the discrete
Alexandrov maximum principle Thm. 3.5. Then we
update h as h+ �d. We repeat the above procedures
until the norm of the gradient of the energy is less
than a prescribed threshold ". Each nearest power cell
Wi(h) corresponding to the sample point pi will be of
the desired measure ⌫i. We conclude our algorithm for
solving the Pogorelov problem in Alg. 1.

During the optimization, the connectivity of the power
diagram keeps changing. Instead of constructing the
convex hull from scratch at every step, we can locally
modify the connectivity through a variation of Law-
son’s edge flip algorithm [45] to improve the e�ciency.
Furthermore, in order to improve the numerical sta-
bility, we can use adaptive arithmetic during the con-
struction of convex hulls.

5. EXPERIMENTS

We conduct experiments to test the e�cacy and e�-
ciency of the proposed Pogorelov map algorithm, and
verify the discrete Alexandrov maximum principle.
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(a) OT Brenier potential (b) Pogorelov Brenier potential

Figure 3: The potentials of the OT problem and the Pogorelov problem. The blue curves give the boundary of the

potentials.

5.1 Experimental setup

All the algorithms are developed using generic C++
compatible with Windows and Linux platforms. We
mainly use Eigen [46] for the numerical computa-
tions and OpenGL for the user interface. The surface
meshes are represented by the half-edge data struc-
ture. All the experiments are conducted on a Win-
dows laptop with Intel Core i7-7700HQ CPU and 16
GB memory.

5.2 Source and Target Measures

In order to test the proposed Pogorelov map algorithm
Alg. 1 and verify that the solution does satisfy the
Alexandrov maximum principle, we conduct several
experiments. The source measure dµ = fdx is the
uniform distribution defined on the planar unit disk
⌦ = D2. We set three target measures (⌦⇤

, ⌫).

Case 1. As shown in Fig. 5, the male facial sur-
face (S,g) in frame (a) is represented as a triangle
mesh with 14, 358 vertices and 28, 328 faces. The sur-
face is conformally mapped to the unit disk via dis-
crete surface Ricci flow [47], the mapping is denoted as
' : S ! D2. The conformal mapping image is shown
in frame (b). The images of the boundary vertices are
qj = '(vj), vj 2 @S, j 2 {1, 2, . . . ,m}. The convex
hull of qj ’s is Conv({qj}

m

j=1). The images of the inte-
rior vertices are pi = '(vi), vi 62 @S, i 2 {1, 2, . . . , n}.
The images of the interior vertices, fall inside the con-
vex hull of the images of the boundary vertices, namely
{pi}

n

i=1 ⇢ Conv({qj}
m

j=1). The target domain ⌦⇤ is
the union of the images of interior vertices,

⌦⇤ := {p1, p2, . . . , pn}.

The discrete measure ⌫i corresponding to an interior
vertex vi is the area of the neighborhood of vi on the

surface, computed as

⌫i =
1
3

X

[vi,vj ,vk]2S

area([vi, vj , vk]) (17)

where [vi, vj , vk] represents a face adjacent to vi on
the original mesh in R3. The target measure is the
summation of Dirac measures ⌫ =

P
n

i=1 ⌫i�(y � pi).
The measure for the boundary vertices is irrelevant.
For the purpose of visualization, the summation of
the discrete measures is normalized to the area of ⌦,
namely ⇡. In this case, the solution to the Pogorelov
problem gives us an area-preserving map of the facial
surface.
Case 2. The discrete measure ⌫i for each interior
vertex vi is set to be 1/n, where n is the number of
the interior vertices, namely target measure ⌫ is the
uniform distribution on ⌦⇤.
Case 3. The discrete measures for the interior
vertices are randomly sampled from the uniform
distribution. Then we normalize the target measure
so that the summation of the discrete measures is
equal to the area of the source domain.

5.3 Discrete Alexandrov Maximum Princi-
ple

For the Pogorelov map, we initialize the heights to be
0 for each the boundary vertex qj and 1

2 (|pi|
2
� 1) for

each interior vertex pi. Fig. 3 shows the Brenier poten-
tial for the traditional optimal transportation map in
the left frame, and the Pogorelov potential in the right
frame. From the figure, we can see that the boundary
value (the height) of the Brenier potential for the OT
map has changes prominently, while the boundary of
the Pogorelov potential is fixed with zero height.

We numerically verified whether the solutions to the
Pogorelov problem satisfy the discrete Alexandrov
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(a) The surface area measure. (b) The uniform measure. (c) The random measure.

Figure 4: The verification of the Alexdrov maximum principle with di↵erent target measures.

maximum principle, the testing results are reported in
Fig. 4. In the experiment, we randomly sample 15, 000
points within the convex hull of ⌦⇤ and compute their
corresponding u-values. The horizontal axis is the
squared Euclidean distance from the sample point pi

to the origin, namely |pi|
2. The green curve shows the

graph of the function of |u(pi)|
2, namely the left hand

side of the inequality of Eqn. (8). The red curve shows
the graph of the function defined by the right hand side
of Eqn. (8), where the dimensional constant c2 = 1, the
diameter of ⌦ is diam(⌦) = 2, the total target mea-
sure |@u(⌦)| = ⇡ for our experiments. It is obvious
that the red curve is above the green curve, and their
di↵erence monotonously decreases. This shows that
the discrete Alexandrov maximum principle holds.

5.4 Measure Preserving Property of
Pogorelov Maps

In this part, we show that the solution to the Pogorelov
problem induces a measure preserving map. For the
male model shown in Fig. 5(a) and its conformal map-
ping image in Fig. 5(b), we define the target measure
as in the case 1 of Sec. 5.2. Fig. 5(c) shows the re-
sult of optimal transportation map using the method
in [2]. Fig. 5(d) shows the Pogorelov map using our
proposed algorithm.

Fig. 6 shows the histogram of the area distortion fac-
tors for the interior vertices in di↵erent iterations. For
each interior vertex vi 62 @S, the area distortion factor
is defined as

log µ(Wi(h))� log ⌫i, i 2 {1, 2, . . . , n}.

From the histograms, it is obvious that the proposed
algorithm converges very fast, and for nearly all the
interior vertices, the area distortion factor is close to
zero, namely µ(Wi(h) is close to ⌫i and the histogram
looks like a Dirac function concentrated at the origin.
This shows that the Pogorelov mapping are measure-
preserving, and has the potential to replace optimal
transportation maps for practical applications due to

its e�ciency and simplicity.

To measure the running time of the proposed method,
we define the relative error to be

"i := |µ(Wi)� ⌫i|/⌫i

and set the maximum relative error tolerance as 1e�8
in Alg. 1. We report the number of the iterations for
convergence, the corresponding running time, the total
transportation cost of the OT map and the Pogorelov
map, the root mean square eror (RMSE) between the
OT map and the Pogorelov map in Tab. 1.

The first two rows show the results of the OT map with
the second type boundary condition, the third and the
forth rows demonstrate the results of the Pogorelov
map with the Dirichlet boundary condition. In the
first column, the target measure is the surface area
measure defined in case 1 in subsection 5.2; in the sec-
ond column, the target measure is the uniform mea-
sure defined in case 2; in the last three columns, the
target measures are the random measure defined in
case 3. From the table, we can see that Pogorelov
map algorithm converges much faster than the optimal
transportation map algorithm with slightly greater to-
tal transportation cost. Additionally, the root mean
square error (RMSE) between the Pogorelov map and
the OT map is very small.

Furthermore, by testing the Alexandrov maximum
principle in the damping process, the robustness is
greatly improved. Especially, when the temporary
solution is close to the boundary of the admissible
space, the original algorithm without maximum prin-
ciple testing causes big fluctuations and become un-
stable. By adding the testing, the damping process is
stabler and converges faster.

6. CONCLUSION

In this work, we introduce a practical algorithm to
solve the classical Pogorelov problem, and propose to
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(a) 3D surface (b) The Conformal mapping (c) The OT mapping (d) The Pogorelov mapping.

Figure 5: The results of the Alex model.

Figure 6: The histogram of the area distortion of the male facial model in di↵erent iterations.

use the measure-preserving Pogorelov map to approx-
imate the optimal transportation map, due to its sim-
plicity and e�ciency. We also prove a discrete version
of the classical Alexandrov maximum principle, which
gives an apriori estimate for the solution to the Monge-
Ampère equation with Dirichlet boundary condition.

Our experimental results demonstrate the e�ciency
and accuracy of the Pogorelov map, and verify the dis-
crete Alexandrov maximum principle. Furthermore,
the experiments also show that the robustness of the
proposed algorithm can be improved by adding maxi-
mum principle testing.

In the future, we plan to generalize the algorithm
to other geometric problems related to the Monge-
Ampère equation, and use more apriori estimates on
the discrete settings to further improve the e�ciency
and accuracy of the proposed algorithms.
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