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1

Alexandre Chemin
1

Maxence Reberol
1

François Henrotte
1

Jean-François Remacle
1
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ABSTRACT

A novel algorithm that produces a quad layout based on an imposed set of singularities is proposed. In this paper,
we either use singularities that appear naturally, e.g., by minimizing Ginzburg-Landau energy, or use as an input
user-defined singularity pattern, possibly with high valence singularities that do not appear naturally in cross-field
computations. The first contribution of the paper is the development of a formulation that allows computing a cross-
field from a given set of singularities through the resolution of two linear PDEs. Specific mesh refinement is applied
at the vicinity of singularities to accommodate the large gradients of cross directions that appear in the vicinity
of singularities of high valence. The paper’s second contribution is a correction scheme that repairs limit cycles
and/or non-quadrilateral patches. Finally, a high-quality (elements edges being as close to orthogonal as possible)
block-structured quad mesh is generated from the quad layout and per-partition parametrization.
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1. INTRODUCTION

Quad meshing is a discipline that has been developed
for di↵erent purposes by two distinct communities.
Computer graphics and engineering analysis commu-
nities have indeed produced extensive research in the
subject for decades, leading to both unstructured and
structured approaches of quad meshing. A recent sur-
vey [1] comprehensively discusses the issue of quad
meshing from manual to fully automatic generation,
along with the respective advantages and drawbacks
of the di↵erent methods.

In a block-structured quad mesh, most of the vertices
are regular. A vertex v is regular if it has the optimal
number nv of adjacent quads: nv = 2 if the vertex is
on the boundary @⌦ of the domain ⌦ to be meshed,
and nv = 4 if it is an internal vertex. Our approach
for block-structured quad meshing relies on the com-
putation of an auxiliary object, called a cross-field, as
a guide to orient the quadrangular elements. Cross-
fields have isolated singularities that can be shown to

correspond to the location of irregular vertices of the
quad mesh [2]. Using this useful structure of cross-
fields has become popular to generate block-structured
quad meshes [3, 4, 5, 6, 7]. More specifically, gener-
ating block-structured quad meshes requires the con-
struction of a quad layout. A quad layout is the par-
titioning of an object’s surface into simple networks
of conforming quadrilateral patches [8]. Fig. 1 shows
examples of quad layouts for a simple 2D domain.

Two main approaches exist to extract a quad lay-
out from the singular structure of a cross-field. The
first approach consists in computing a seamless global
parametrization of the domain where integer iso-values
of the parameter fields form the sides, or the separa-
trices, of the quad layout [9, 10, 11]. This approach is
implicit in the sense that it does not explicitly compute
separatrices from the cross-field. The second approach
is explicit. It is the one used in this paper. It consists
in directly tracing the separatrices of the quad layout,
starting at the singularities of the cross-field. A sin-
gularity of valence 5 corresponds to a vertex v with
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Figure 1: Three quad layouts of a simple domain defined by a square minus a disk. Colored points are the irregular
corners of the layouts.

nv = 5 adjacent quads, so that 5 separatrices can be
started at this vertex v. Separatrices then follow in-
tegral lines of the cross-field, eventually ending on @⌦
or on another singularity.

The main drawback of the explicit approach is related
to its lack of geometrical robustness. Assuming that
singularities are located at vertices of our mesh, the
orientation of the cross-field is thus varying abruptly
at the vicinity of a singular vertex v. That bad rep-
resentation of the cross-field can have dramatic conse-
quences. In many cases, the right number of separa-
trices cannot even be traced starting at v. Bad cross
representation around singularities is also the cause of
tangential crossings, i.e., separatrices that should meet
at a singular vertex but that miss the rendez-vous and
continue further, eventually forming an infinite loop.

Mesh refinement around singularities would then seem
to be a reasonable idea. Disappointingly, it is not.
Cross-field smoothers have the bad habit to push sin-
gularities away from refined zones, because the ener-
gies used in cross-field models are unbounded (in the
continuous case) at singularities, so that locating sin-
gularities in coarse region allows finding better minima
(in the discrete case). Standard mesh adaptation thus
fails here, because the solution does not converge in
terms of energy. Fig. 2 shows an example of that typi-
cal behavior. Fig. 2 (left) shows a cross-field computed
on a uniform mesh. Mesh refinement is then applied
close to those singularities, and the cross-field solver
is then applied once again with the refined mesh. On
Fig. 2 (right), one can observe that the singularities
have moved with respect to their position after the
first cross-field computation. The tendency to escape
refined regions is so strong that the solution is actually
breaking the symmetry of the problem.

In order to avoid this issue, our cross-field computation
is implemented as a two-step process. A first cross-
field is computed in a standard fashion by means of
minimizing a nonlinear energy (the Ginzburg-Landau

energy functional in our case). The singularity pattern
of the cross-field is extracted from this first computa-
tion and then injected as a constraint for a second
cross-field computation on an adapted mesh. The for-
mulation for computing this second cross-field is dif-
ferent. Here, the singularity pattern is taken as an
input and a cross-field is computed by means of solv-
ing two linear systems. Singularity positions are thus
prescribed so mesh adaptation can be performed. The
local structure of a cross-field at a singularity is essen-
tially radial: the mesh that is used in this second step
thus involves specific bicycle spokes patterns at singu-
larities (see section 4). With that ad hoc refinement,
the singular structure of the cross-field is perfectly
captured. Another advantage of our approach is the
possibility of moving singularities, adding or remov-
ing some, while still respecting topological constraints.
In this work, we use that advantage for correcting or
adapting the quad layout when necessary, e.g., to fix
non-quadrilateral partitions or to avoid limit cycles.

The full pipeline of our block-structured quad mesher
consists in four steps and is described in Figure 3.

Step 1: compute a first cross-field using standard non
linear minimization procedure that allows to find a sin-
gularity pattern i.e. singularity positions and indices.

Step 2: compute a second cross-field with the pre-
scribed singularity pattern of Step 1 on a refined mesh.

Step 3: compute a neat quad layout decomposition
without infinite loops or t-junctions. Quad layout par-
titioning is performed on the accurate cross-field of
Step 2 by applying the separatrice tracing scheme pre-
sented in [7].

Step 4: generate a full quadrilateral mesh.

Note that Step 1 can be skipped if a singularity pattern
is provided by the user. Figure 4 shows this reduced
3-step process with a very unique singularity of very
high valence 8!
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Cross-field0 1

Figure 2: Displacement of singular points due to a cross-field mesh dependency. Cross-field computation follows the
work from [2].

Cross-field0 1 -0.5 1.3H field

Figure 3: Illustration of 4-steps pipeline

-2.54 7.32H field

Figure 4: Illustration of the reduced 3-steps pipeline

The two-step cross-field computation delivers thus an
accurate mesh independent cross-field, Fig. 3, from
which one can then continue with a neat quad lay-
out decomposition, and eventually a full quadrilateral
mesh, Fig. 3 and 4. Quad layout partitioning is per-
formed on the final (accurate) cross-field by applying
the separatrice tracing scheme presented in [7]. The

final step is the generation of the quadrilateral mesh
by following the parametrization imposed by the cross-
field (section 7).

The steps of the proposed approach are detailed in Al-
gorithm 1. The whole pipeline has been implemented
as a fully functional module in Gmsh [12], the open
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source finite element mesh generator. Although the
pipeline can be fully automated, a certain level of in-
teractivity is possible. The user is indeed given the
opportunity to modify the singularity pattern and to
adapt the location and index of singularities, as long
as it corresponds to the topology of the domain. The
modified singularity valence can be as high as six or
eight, Fig. 4.

Algorithm 1 Generate all quad mesh

INPUT: FILE in .geo format
OUTPUT: FILE in .msh format

1: Non-linear cross-field computation on ⌦ (Sect. 3)
2: Extract singularity pattern (Sect. 4)
3: Compute cross-field with imposed singularities

(Sect. 5)
4: Obtain and correct quad layout (Sect. 6)
5: Generate quad mesh on ⌦ (Sect. 7)

2. RELATED WORK

Due to the fact that some of the techniques used
in our approach are customary in the meshing and
computational geometry communities, we will focus
in this article on the most notable trends and con-
trasts/resemblances with existing works. For the sake
of comprehensiveness, bibliographic references for our
algorithm are indicated in corresponding sections.

2.1 Cross-field generation for meshing
purposes

For quad meshing purposes, authors are generally rely-
ing on either explicit quadrangulations or parametriza-
tion/remeshing techniques [13]. The group of
parametrization approaches is enriched with numerous
methods [1], where rough dissemination could be made
with two generalized flows: cross-field guidance algo-
rithms ([4, 5, 6, 7]) and cut-graph techniques ([9, 10]).
Our approach follows the first flow with the di↵erence
of using two independent successive cross-fields, which
is unusual in related work on cross-field generation
([14, 15]). Similarly to [7, 11, 16], we aim at obtain-
ing a locally integrable cross-fields, such that for each
point X inside a patch holds:

r⇥ u1 = 0, r⇥ u2 = 0, (1)

where u1 and u2 represent two orthogonal branches of
the cross defined in point X.

Stressed out by [17], a major compromise to be done
in the computation of cross-fields is between e�cient
design of vector field and control over singularities.
Our algorithm runs fully automatic which frees the
user of painful task to explicitly specify all singularities

on complex domains [18]. At the same time, due to the
independent steps of the algorithm, we are also able to
fulfill the aim of generating a fast smooth cross-field
that respects a user-defined singularity patterns as in
[13, 14].

2.2 Singularities with high indices

High-order singularities’ patterns play an important
role in numerous scientific applications ([19, 20, 21, 22,
23]). Initially, high-order singularities’ definition, ex-
traction and visualization were relying on mathemati-
cal background of Cli↵ord algebra, typically motivated
by applications for fluid mechanics or electrostatics
([19, 22, 23]). Some more recent papers ([21, 23]) are
focused on their role in vector field generation. In our
case, the application of high-order singular points is
exploited for its benefits for quad meshing purposes,
specifically obtaining a quad layout and inducing im-
portant element size gradients in the refined block-
structured quad mesh.

When it comes to imposed singularity configuration,
it is essential to note that not all of the topologi-
cally correct singularity patterns will be valid for quad
meshing. The work [24] presents the su�cient and
necessary condition for valid singularity configuration,
where both the singularities’ valances and holonomy
are taken into account. Some of the most interesting
findings on the non-existence of conformal quandrag-
ulations can be found in [24, 25, 26, 27].

2.3 Quad layout partition guided by
cross-field

Representation of geometrically or topologically com-
plex domains requires their decomposition into blocks,
preferably quadrilateral. A wide range of existing
methods is described in the survey [1]. Works anal-
ogous to ours, i.e. cross-field based approaches, are
decomposing the domain either by generating sepa-
ratrice graph obtained from numerical integration of
streamlines ([4, 5, 6, 7, 28]) or by constructing edge
maps ([29, 30, 31]) and motorcycle graph ([32]) using
the isolines of an underlying parameterization. As al-
ready reported by authors working on the first group
of approaches, generated quad layout commonly re-
quires repairing of invalid configurations caused by
the appearance of limit cycles and thin blocks. Some
of the e�cient methods for solving these issues are
[29, 28, 33, 34] as well as the quantization method
[9]. Generating and correcting the quad layout, in our
case, shares some common points with [7, 9, 28], exact
di↵erences with respect to these works will be outlined
in the corresponding sections.
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3. FIRST CROSS-FIELD
COMPUTATION

A 2D cross c is a set of 4 orthogonal vectors of the
same norm l, i.e., c = {uk, |uk| = 1, k 2 [|1, 4|]}. On
a planar 2D domain ⌦, a Cartesian basis {x,y} can
be defined, and the angular orientation of the cross c

can be simply represented by an angle ✓ in that basis,
since one has uk = l cos(✓ + k ⇡

2 )x + l sin(✓ + k ⇡

2 )y,
as depicted in Fig. 5. This angular representation ✓ of
the cross is however determined only up to an additive
factor k0 ⇡

2 with k0 2 Z.

Figure 5: 2D cross definition as a set of four orthog-
onal vectors

A 2D cross-field, now, is a map C⌦ : X 2 ⌦ ! c(X),
and the standard approach to compute a smooth
boundary-aligned cross-field is to minimize the Dirich-
let energy

min
C⌦

Z

⌦

krC⌦k2 (2)

subject to the boundary condition c(X) = g(X) on
@⌦, where g is a given function.

The indetermination on ✓ mentioned above prevents
from using it directly as unknown for the finite element
formulation of the problem. In order to have a unique
(symmetry invariant) and continuous cross represen-
tation, the alternative vector representation v(X) =
(cos(4✓), sin(4✓)) is preferred [35], which leaves us with
a vector field to solve for.

This vector field is continuous, but also subject to the
nonlinear constraint |v(X)| = 1. An elegant way to
deal with this constraint is to minimize a Ginzburg-
Landau type functional, which penalizes local vector
values that deviate from the unit norm [2]. Direct
solving of the non-linear Ginzburg-Landau problem is
however rather expensive. Another approach is the
MBO algorithm proposed in [6]. It is a faster and sim-
pler alternative that provably converges to the same
results on uniform meshes. The main idea of the MBO
algorithm is to alternate a heat di↵usion problem, that
performs the Laplacian smoothing of the vector field,
with a projection back onto the space of unit norm
cross-fields, until convergence is achieved. Each step

of MBO algorithm is thus given by

@v
@t

= ↵r2
v then v v

kvk . (3)

As in [36], we start with large di↵usion (e.g. ↵ =
(0.1 ⇤ bbox diagonal)2) and we progressively decrease
until we reach the small di↵usivity coe�cient associ-
ated to the mesh size (e.g. ↵ = (edge min)2). This
strategy considerably accelerates convergence as the
low frequencies are solved before the larger ones, as
in a multi-grid approach. To further accelerate the
computation, we use a small number of di↵usivity co-
e�cients (e.g., five to ten) and we apply the MBO
step until convergence for each di↵usivity coe�cient.
As the di↵usion linear system is not changing for a
given di↵usivity coe�cient, we can factorize the linear
system one time and reuse it until convergence. In
the end, the computational cost is approximately one
linear system solve per di↵usivity coe�cient, i.e., five
to ten in total, which is very reasonable to accurately
solve the cross-field non-linear problem (Eq. 2).

It is important to note that the aim of this first cross-
field computation is to locate singularities. Therefore,
any cross-field computation method could be used here
instead, as for example the one described in [37], which
could prove to be faster.

4. SINGULARITY PATTERN

Singularities play an important role for meshing pur-
poses and their properties are well documented in the
literature [4, 5, 6, 7, 28]. Obviously, cross-fields have a
close parenthood with vector fields and, like any direc-
tion field (a normalized vector field, a cross-field, . . . ,
more details in [14]), they are subject to the topolog-
ical constraints of the Poincaré-Hopf theorem. Let us
consider, for instance, a smooth unit norm vector field
u on a surface ⌦. The local value of this vector field
can be defined as the rotation by a certain angle ✓
with respect to a local angular reference around the
local normal vector to the surface. This natural geo-
metric representation of the vector field has however a
number of issues. It is only defined up to an additive
angle 2k⇡, k 2 Z. It is also discontinuous wherever the
value of ✓ jumps from 0 to 2⇡ or reversely. Finally, as
customary in di↵erential geometry, ✓ values at distant
points are incommensurable unless a parallel trans-
port rule is added, because they refer to di↵erent local
normal vectors and di↵erent local reference positions.

Still, in an infinitesimal neighborhood VX of a point
X 2 ⌦, the parallel transport is superfluous because
both the normal vector and the reference angular ref-
erence can be considered constant. The smooth vec-
tor field u then induces a map C1 ! C1, where C1

is the unit circle, for any (infinitesimal) closed curve
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C ⇢ VX . This map follows the turns done by u as the
curve C is travelled once. As u is smooth, the num-
ber of turns is necessarily an integer number, called
the index of u at X, indexX(u) 2 Z. The point X is
regular if the index is zero, and it is a singularity of
index indexX(u) otherwise.

The principle is similar for a cross-field C⌦ except that
the map is C1 ! C1/O where O stands for the sym-
metry group of the cross, and that the index is now
an integer multiple of 1

4 . If one notes Sj , j = 1, . . . N ,
the singularities of the cross-field, the Poincaré-Hopf
theorem states that

NX

j=1

indexC⌦(Sj) = �(⌦), (4)

where �(⌦) is the Euler characteristic of the (non nec-
essarily planar) surface ⌦. The indices of the singu-
larities will be noted

kj ⌘ indexC⌦(Sj) =
t
4

, t 2 Z (5)

and we shall also use the related concept of valence
defined by

kj =
4� valence(Sj)

4
, valence(Sj) = 4� 4kj .

In practice, we use a simple way to find the singu-
larity location by computing the winding number in
a similar fashion as in [28], originally from [38]. The
corresponding valence is then determined by detecting
the number of separatrices concurring at the singular-
ity [7]. When the cross-field is computed on a domain
with a coarse mesh around singularities (of valence five
or higher), numerical inaccuracies can be expected in
the determination of the cross-field orientations, which
will finally lead to an invalid quad layout generation.
To prevent this, the mesh is refined in the form of bicy-
cle spokes in the vicinity of the identified singularities,
so that the large gradients of cross directions are well
accommodated, as shown in Fig 6.

An adaptation of the singularity pattern can be per-
formed at this stage of the pipeline. With the two-step
approach, the user is indeed o↵ered the opportunity
before the second cross-field computation to modify
the location of singularities, or even to place additional
singularities, provided the final singularity pattern still
fulfills the Poincaré-Hopf topological constraint (4).
For instance, additional pairs of singularities of valence
3 and 5 do not modify the result of the summation in
(4). Such 3-5 pairs can therefore be added freely to
the singularity pattern in order, for instance, to allow
a less distorted quad layout or to impose a specific size
map, as shown in Fig. 7.

In practice, imposing a singularity pattern simply con-
sists in encoding valences data for vertices of the initial

-2.54 7.32H field

Figure 6: Mesh refinement around singularity of va-
lence 8

Figure 7: Two quad layouts of the same region. The
addition of a 3-5 pair to the singularity pattern, in the
second example, allows imposing a specific size map
on the region.

mesh and ensuring a su�cient mesh refinement in their
respective vicinities.

It will also be shown at the end of the following sec-
tion that not all valid singularity patterns will be suit-
able for obtaining a high quality quad layout, depend-
ing on the geometrical characteristics of the domain.
Mispositioning of singularities or imposing inadequate
valences may lead in practice to non-quadrilateral
patches.

5. CROSS-FIELD COMPUTATION
WITH IMPOSED SINGULARITY

PATTERN

The nonlinear problem described in Sect. 3 is able
to reveal a singularity pattern for the domain ⌦ un-
der analysis. The computed cross-field v is however
rather inaccurate. It is indeed continuous and sin-
gularities are areas in this continuous field where the
norm deviation from unity fails to be ruled out by
the penalty term. This inaccuracy does not heav-
ily a↵ect the singularity pattern, because singularity
indices are integer quantities and their location need
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only to be known approximately. However, it jeopar-
dizes the accurate subsequent tracing of separatrices
and thus justifies the construction of a second more
accurate cross-field with a truly nonlinear field rep-
resentation, and whose computation is based on the
singularity pattern that has been extracted from the
first computation (Sect. 4).

Let the singularity pattern be defined as the set S =
{Sj , j 2 [|1, N |]} of N singularities located at Xj and
of respective index kj . A cross-field C⌦ matching this
singularity pattern must fulfill three constraints:

if X is on @⌦, at least one branch of C⌦(X) is
tangent to @⌦,

if X is a singularity of C⌦ then X 2 S,

if X = Sj then index(C⌦(X)) = kj .

As in this paper only the planar case is considered,
⌦ ⇢ C can be regarded as a subset of the complex
plane. We shall note n the unit normal vector to the
complex plane, g the interior unit normal vector to the
boundary @⌦, and T = g ⇥ n the unit vector tangent
to @⌦.

The method presented in this section relies on the com-
putation of a dual scalar field H defined in section 5.1,
continous on the whole domain ⌦. This approach is
similar as the one detailed in [39].

5.1 Computation of the H field

We are looking for a holomorphic function

F : P ⇢ C ! C
z = U + iV 7! P = x+ iy

(6)

where P is a parametric space. As F and P are un-
known, solving directly this problem is proved to be a
di�cult task. Instead, the focus is on finding the 2⇥2
jacobian matrix of F

JF (z) = (@UF(z), @V F(z)) ⌘ (ũ, ṽ), (7)

where ũ, ṽ are the column vectors of J . The function
F being holomorphic, the columns of J have the same
norm ||ũ|| = ||ṽ|| ⌘ eH and are orthogonal to each
other, ũ · ṽ = 0, so that one can write

JF (z) = eH(u,v) , n = u ^ v

ũ and ṽ are 2 branches of the cross-field we are looking
for, and ũ can be represented by a complex function

f : ⌦! C , f = eH+i✓. (8)

The computation of the cross-field is rephrased into
the computation of two real functions, H : ⌦! R and

✓ : ⌦! R, from which the first branch ũ = f = eH+i✓

can be deduced, and the second branch of the cross-
field is simply ṽ = iũ = if .

By construction, ũ being a partial derivative of a holo-
morphic function, f is holomorphic. As (8) shows, H
and ✓ are the real and imaginary parts of a complex
logarithmic function. Indeed,

log(f) = ln(|f |) + i arg(f)
= H + i(✓ + 2k⇡), k 2 Z. (9)

The complex logarithm being a holomorphic function,
both H and ✓ are harmonic real functions. The H
field, which is the real part of the logarithm, is contin-
uous on ⌦ \ S, i.e., on the domain ⌦ from which the
pointwise singularities Sj have been excluded. The ✓
field, on the other hand, is multi-valued and a branch
cut (see Sect. 5.2.1) has to be additionally defined on
⌦ \ S to have it single-valued, and make its compu-
tation possible. Finally H and ✓ obey the Cauchy-
Riemann equations

r✓ = n⇥rH, (10)

which shall allow to obtain ✓, once H has been com-
puted.

The H field is solved first. As shown in [40], it is the
solution of the partial di↵erential problem on ⌦

r2H = 2⇡
NX

j=1

kj
4
�(Xj). (11)

The boundary condition T(s) = (cos ✓(s), sin ✓(s)) en-
sures that the cross, represented by ✓(s), is tangent
to the boundary @⌦, represented by the tangent vec-
tor T(s), with s a curvilinear coordinate on @⌦. This
entails by derivation

@sT = (� sin ✓, cos ✓) @s✓ = g @s✓.

On the other hand, one knows from the di↵erential
geometry of surfaces that @sT ⌘ gg with g the
geodesic curvature of the curve @⌦. One has thus by
identification

g = @s✓ = T ·r✓ = (n⇥rH) ·T = �g ·rH,

where Eq. (10) has been used.

Summing up, the computation of H consists in solving
the linear boundary value problem

(
r2H = 2⇡

P
N

j=1

kj
4
�(Xj) in ⌦

�g ·rH = g on @⌦.
(12)

As the boundary condition is of Neumann type on the
entire boundary, a solution H exists if the condition

Z

@⌦

g d@⌦ =

Z

⌦

2⇡
NX

j=1

kj
4
�(Xj) d⌦ (13)
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is verified, which is obviously the case, as the Gauss-
Bonnet theorem states the first identity in

Z

@⌦

g d@⌦ = 2⇡�(⌦) =

Z

⌦

2⇡
NX

j=1

kj
4
�(Xj) d⌦ (14)

whereas the second identity is the Poincaré-Hopf the-
orem.

The solution H of the boundary value problem
Eq. (12) is however known up to an arbitrary additive
constant, which is not harmful as only rH is needed
to determine ✓. It is a linear problem solved using the
finite element method on a triangulation of ⌦ with
order 1 Lagrange elements. Once H is known, one
proceeds with the determination of ✓, as explained in
the next section, to complete the cross-field (f, ıf).

Figure 8: H field obtained for 4 singularities of va-
lence 3 on corners, and 4 singularities of valence 5
inside the domain.

5.2 Computation of the ✓ field

As the curl of the right-hand side of Eq. (10)

r⇥ (n⇥rH) = (r2H)n = 0

vanishes in ⌦ \ S, one knows that the left-hand side
is indeed a gradient, and that there exists a scalar
field ✓ verifying the di↵erential equation (10). This
function is however multi-valued and a branch cut has
to be determined to make it single-valued, and make
its computation possible.

5.2.1 Generate the branch cut

A branch cut is a set L of curves of a domain ⌦ that do
not form any closed loop and that cut the domain in
such a way that it is impossible to find any closed loop
in ⌦\L that encloses one or several singularities, or an
internal boundary. As we already have a triangulation
of ⌦, the branch cut L is in practice simply a set of
edges of the triangulation. The method presented here
is based on [13].

The nodes and the edges of a triangulation of a do-
main ⌦ can be regarded as a graph G. A spanning
tree T is a sub-graph of G that links all vertices of G
with the minimum number of edges. A spanning tree
can be generated by a Breadth-first-search algorithm.
One starts from an arbitrary vertex v, and adds to the
spanning tree T all edges (v, vi) that are adjacent to
v and that connect vertices vi that have not yet been
visited by the algorithm. The procedure is continued
recursively with all newly considered vertices vi until
running out of unvisited vertices. There exist many
equivalent spanning trees for a given mesh. Their
shape can be improved by modifying the Breadth-first-
search algorithm so that vertices which are the closest
to the singularities or to the boundaries are processed
in priority. A spanning tree built this way is presented
in red in Fig. 9.

This spanning tree forbids however closed curves
around all nodes of the mesh, which is an unnecessar-
ily strong restriction, as we only want to forbid closed
curves around the singularities. If we call hanging edge
of T an edge whose leaf node vl is not a singularity (a
leaf node is a node of the graph adjacent to exactly one
edge), the branch cut is the sub-graph of T obtained
by successively removing hanging edges until no hang-
ing edges is left in the spanning tree. The result of
this substraction is the branch cut L needed for the
computation of ✓. It is depicted in black in Fig. 9.

Figure 9: @⌦ is represented in blue, in white the
singularities, in red are edges of the spanning tree T ,
and in black the edges of the branch cut L.

5.2.2 Solve the Cauchy-Riemann
equations

Once a branch cut L is available, the field ✓ can be
computed by solving the linear Cauchy-Riemann equa-
tions (10). The chosen boundary condition consists
in fixing the angle ✓ at one arbitrary point P 2 @⌦
so that C⌦(P) has one of its branch collinear with
T(P). The problem can be rewritten as the well-posed
Eq. (15) and is solved using finite element method on
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the triangulation ⌦T with order one Crouzeix-Raviart
elements. This kind of elements have proven to be
more e�cient for cross-field representation as under-
lined in [7].

8
<

:

r✓ = n⇥rH in ⌦
✓(P) = ✓P for an arbitrary P 2 @⌦

✓ discontinuous on L
(15)

Fig. 10 presents results for 3 di↵erent types of singu-
larities. As expected, H and ✓ isolines are orthogonal,
this two scalar fields being harmonic conjugate.

Once H and ✓ scalar fields are computed on ⌦, the
cross-field C⌦ can be retrieved for all X 2 ⌦:

c(X) = {uk = eH(X)+jk✓(X), k 2 [|1, 4|]} (16)

5.2.3 Non quad-meshable cross-fields

We showed in the previous section that if the imposed
singularity pattern respects the condition on Euler’s
characteristic, then there exists a unique scalar func-
tion H (up to an additive constant) verifying Eq. (12)
and a unique scalar function ✓ verifying Eq. (15). This
is leading us to a unique cross-field solution C⌦ to our
problem.

However, we never showed that the obtained cross-field
C⌦ is actually respecting the following and mandatory
condition:

8X 2 @⌦, at least one branch of C⌦(X) is tangent
to @⌦

Indeed, problem (15) is well-posed and only ensures
this condition for a given P 2 @⌦. Adding extra
boundary conditions for ✓ will lead to make problem
(15) ill-posed.Therefore, when domain ⌦ is not simply
connected, it is possible that obtained a cross-field C⌦

not tangent on parts of @⌦.

When this happens, it means that there is no holo-
morphic function F (eq. 6) matching all conditions
imposed (i.e. singularity pattern and tangency to do-
main boundaries). Figure 11 shows two di↵erent sin-
gularity patterns where only the singularity location
di↵ers for a same domain ⌦. The domain ⌦ consid-
ered is an annulus, and a set of 4 index �1 and 4 index
1 singularities is imposed. Singularity pattern for the
example on the left leads to a quad decomposition of
the domain and singularity pattern for the example on
the right does not. Cross-field obtained for example
on the right does not respect the tangency condition
on ⌦ interior boundary. There exists no holomorphic

transformation matching at the same time singularity
pattern and cross-field tangency to ⌦ boundaries.

For the issue of imposing correct singularity configura-
tion we refer the user to Abel-Jacobi conditions given
in [24].

Figure 11: Highlighting of singularity patterns for
which no holomorphic transformation matching all im-
posed conditions exists.

5.3 Computing the per-partition
parametrization

Obtaining a global parametrization comes down to
computing real values functions U(x, y) and V (x, y)
defined in Eq. (6), from the known smooth jacobian of
the mapping F : JF (z) = (@UF(z), @V F(z)) ⌘ (ũ, ṽ)
Eq. (7). Establishing U and V is equivalent to deter-
mining F�1. We know that 8P = F(z) 2 ⌦ \ S, JF
corresponds to two branches of the cross-field.

We also know that JF�1 jacobian of F�1 is, 8P 2
⌦ \ S, such as:

8
<

:

JF�1(P) = (@xF�1(P), @yF�1(P))
= J�1(F�1(P))
⌘ (ū, v̄)T .

(17)

which, by using the Eq. (7), gives:

⇢
ū = e�H

u = rU
v̄ = e�H

v = rV. (18)

Now, the parametrization can be simply obtained by
solving: (

rU = ū

rV = v̄,
(19)

using a finite element method with order one Lagrange
elements.

We mentioned earlier that for the problem to be well
posed, JF has to be smooth, meaning that ũ and ṽ

have to be smooth. This implies that a lifting of the
cross-field C⌦ has to be done on ⌦ allowing disconti-
nuities of (ũ, ṽ) across L. Once this operation is done,
it is possible to determine (ū, v̄) and compute U and
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Figure 10: H isolvalues (in red) and ✓ isovalues (in blue) for di↵erent singularities configurations. The black line
represent the cutgraph. All cases have valence 3 singularities imposed at corners (for a total of 4 singularities in
each case). The extra singularities which are added inside the domain are: 4 singularities of valence 5 (left figure), 2
singularities of valence 6 (center figure), 1 singularity of valence 8 (right figure).

V by solving the Eq. (19). By construction, U and V
will be discontinuous across L, and their isolines will
be in all points tangent to the cross-field C⌦.

It is important to note that for this global parametriza-
tion computation, no conditions are imposed on the
cut graph L. Therefore, nothing guarantees corre-
spondence of U and V isolines across L. In principle,
this global parametrization is not enough by itself to
generate a conforming quadrilateral mesh of a domain
⌦. Some works bypass these di�culties [10, 13, 41]
by constraining parametric coordinates on boundaries
and on L, however it is not the direction followed in
our approach.

The goal here is to obtain per-partition parametriza-
tion, starting from the construction of a conformal
quad layout of ⌦ (section 6) and followed by the
computation of independent parametrizations for each
of the resulting quadrilateral partitions. The per-
partition parametrization computed in this manner is
aligned with smooth cross-field (singularities can only
be located on corners of the partitions). To achieve
this goal, the first step is to extract corresponding tri-
angles of each patch. Due to the mutual separatrices’
points, neighboring partitions contain the overlapping
triangles, as shown in Fig. 13.

An important remark is that no cut graph is needed
here to perform a lifting of the underlying cross-field
to obtain smooth couple of vector fields (ũ, ṽ). As
no cut graph is used, all isolines of U and V will be
continuous inside the patch, Fig 14.

Based on [7] for locally integrable cross-fields, note

that on each partition holds:

(
r⇥ e�Hu = 0

r⇥ e�Hv = 0,
(20)

where from (ũ, ṽ) is a locally curl-free cross-field.
Thus, the resulting parametrization (U, V ) is confor-
mal on each patch ([11]). Following [42], a confor-
mal mapping is also harmonic. Radó-Kneser-Choquet
(RKC) theorem for planar harmonic mappings (details
in [42, 43]) states:

If f : S ! R2 is harmonic and maps the boundary
@S homeomorphically into the boundary @Q of some
convex region Q ⇢ R2, then f is one-to-one.

In our case, the parametric (image) region is in the
shape of a rectangle, thus, our parametrization (U, V )
is per-partition bijective.

6. QUAD LAYOUT: GENERATING AND
CORRECTING THE PARTITIONS

In order to reach the ultimate goal of generating a
block-structured quad mesh, we must ensure that the
quad layout contains only conformal quadrilateral par-
titions. To do so, a special attention is paid on ob-
taining the minimal number of separatrices, existence
of limit cycles and non-quadrilateral partitions. In the
following, we present ways to modify all ill-defined par-
titions, such that the overall quad layout topology is
not jeopardized.

6.1 Obtaining the partitions

To obtain the quad layout, the separatrix-tracing al-
gorithm is performed on retrieved cross-field from H
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Figure 12: U isolvalues (in red) and V isovalues (in
blue) for di↵erent singularities configurations. The
black line represents the cutgraph.

Figure 13: Extracted triangulated partition for
parametrization

function. Initiation of separatrices in singular areas
follows the method from [7], while the tracing of sepa-

Figure 14: U isolvalues (in red) and V isovalues (in
blue) on extracted partition

ratrices in the smooth parts of domain relies on Heun’s
(a variation of Runge-Kutta 2) numerical scheme.

Our algorithm doesn’t have an order of tracing the
separatrices - they are all generated simultaneously
and independently, similarly to motorcycle graph algo-
rithm. Contrary to motorcycle graph’s stopping crite-
ria, in our case, the tracing of separatrices is finished
as soon as they reach the boundary or encounter a
singular point. The number of generated separatrices
in this manner is not appropriate for a quad layout,
due to the separatrices’ initiation process which allows
tracing the same separatrice from two di↵erent singu-
lar points, as shown in Fig. 15. To obtain the valid
quad layout, criteria for gaining the minimal number
of separatrices are adopted from [7].

>>>> >>>>

Figure 15: Illustration of doubled separatrice and
removal of the duplicate

The next step is to establish the existence of limit cy-
cle(s) in the set of the generated separatrices. In more
details, we define a separatrix which is transpassing
the other separatrices more than once as a possible
limit cycle. An authentic limit cycle is a possible limit
cycle which has more far-flung intersections than its
pair, or a separatrix not reaching the boundary or-
thogonaly. An authentic limit cycle is then cut at the
closest orthogonal intersection with another separa-
trix, as shown in Fig. 16. By doing so, simplifying the
quad layout is accomplished (due to the disappearance
of the thin chords), however the obtained partitions
can contain T-junctions, which will be modified later
on.
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Figure 16: Illustration of an authentic limit cycle
treatment

6.2 Valid quad layout

If the quad layout contains T-junctions (generated
from cutting the authentic limit cycles) or non-
quadrilateral partitions, its no longer suitable for
block-structured quad meshing. More specifically, a
high-quality quad mesh, according to [3], must obtain
not only the adequate configuration of singularities (in
terms of their number and placement) but also respect
the connectivity constraint of being conforming and
purely quadrilateral, which the previous issues hinder.

The appearance of T-junctions in our algorithm has
already been elucidated, which is not the case with
the non-quadrilateral blocks though. In order to ex-
amine (and later on correct) the latter case, it’s impor-
tant to mention that our algorithm deals with planar
geometries on which, as stressed out by [3] and [14],
degenerate singularities (of valence 1 - singlet or of va-
lence 2 - doublet) may appear. For instance, the typi-
cal placement of singularities of valence 2 is on corners
of convex boundaries ([3]) or on very sharp/obtuse an-
gles due to the number of cross-field’s rotations around
the local normal, as the exact formulas for singular-
ity index in [6] show. While these types of singulari-
ties do not endanger topological validity of the obtain
quad layout, they can cause problems for the block-
structured quad meshing by forming non-quadrilateral
blocks, as shown in Fig. 18.

6.3 Correcting the partitions

When the partition contains a T-junction, the idea is
to find the closest neighbor (which is not the bound-
ary vertex or another T-junction) and, by knowing
the parametrization of these blocks, to merge these
two separatrices in the parametric space and correct
all patches a↵ected by this action, Fig 17. This pro-
cess is iteratively repeated until the quad layout is T-
junction free. Following the definition of separatrices
and singular points, each of the newly obtained parti-
tions has smooth cross-field inside allowing further on
parameterization.

M K L

N

1

8

5

2

7

46

3

T

S
M L

N

1

8 7

46

3

5

S

u

v

T 4

2 3

5

S

Figure 17: Modifying patches containing T-junctions
and a↵ected partitions

Correcting the triangular partitions is performed by
forcing the singularity of valence 2 on the boundary
into splitting in two singularities of valence 3, so that
the topology of the overall obtained partitions remains
valid (Fig. 18). The position of the imposed singularity
is determined simply by finding the barycenter of the
partition. Final quad layout is obtained by splitting
the triangular patch into three quadrilateral partitions
and correcting all patches influenced by the former
action.
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Figure 18: Modifying the patch containing a singu-
larity of valence 2 and a↵ected partitions

7. QUAD MESHING

To generate a final quad mesh of the model, we start by
remeshing each layout’s partition with bilinear transfi-
nite interpolation (TFI) in the parametric space, while
respecting the discretizations of layout’s edges implied
by the field H. This step is followed by a computa-
tion of a per-partition parametrization aligned with
the cross-field (as detailed in section 5.3). Finally,
generating a quad mesh of pleasing quality and intact
singularities’ positions (examples in section 8) is ob-
tained by mapping TFI mesh onto the physical space.
At this point, it is indeed possible to further opti-
mize vertices’ placements via smoothing (e.g. Winslow
from [44, 45]), in the cases when the application al-
lows/encourages moving singularities away from their
initial positions. For the sake of completeness, details
of the above-mentioned steps are elucidated in the fol-
lowing.

In order to remesh each patch of the quad layout, the
chords’ data has been extracted. Keeping in mind that
the quad layout is now composed of only conforming
quadrilaterals, it is possible to consistently discretize
all its edges by following the size map implied by H:
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s = eH , (21)

where s represents the mesh size. This step tends to
generate a uniform quad mesh, unless a specific size
map (via implying an adequate configuration of sin-
gularities) is imposed by the user. With obtained dis-
cretization of edges, a quad mesh in parametric space
is trivially created by remeshing each partition with
bilinear transfinite interpolation ([46]).

As the parametrization is now defined, the mapping
of the quad mesh from parametric onto physical space
is achieved by simply finding the triangle TM in the
parametric space to whom the point M(U, V ) belongs.
Afterwards, the computing of coordinates M(x, y, z) is
done by assuming that there exists a linear mapping
from physical space X to parametric space P inside
the triangle TM .

8. CONCLUSION AND FUTURE WORK

We presented an algorithm that can e↵ectively gen-
erate a conformal quad layout from a naturally ap-
pearing as well as user-imposed set of singularities,
as shown in Fig. 19. The latter case is possible under
constraints of the topological correctness and existence
of conformal mapping for imposed singularity pattern.
In particular, the developed method relies on the com-
putation of two cross-fields. The first one is computed
solving a non-linear system and is used to locate sin-
gularities and obtain their valence, the second one is
computed on a refined triangular mesh to accommo-
date high gradients and improve cross-field represen-
tation around singularities. It is obtained solving two
linear systems. With the correction scheme for limit
cycles and non-quadrilateral partitions, we can pro-
duce a conformal quad layout and, finally, a block-
structured quad mesh. Remeshing of each patch relies
on constructing a per-partition parametrization and
following the isolines from the second cross-field. A
quad mesh obtained in this manner preserves singu-
larity placement and is of pleasing quality, as shown in
Table 1. Once the quad layout obtained, the computa-
tional cost of our quad meshing algorithm depends on
the target number of quads or the approximate length
of the edge imposed by the user, which takes less than
a second in the presented examples. At last, our novel
pipeline exhibits interactive design while being simple,
automatic and available in the Gmsh software.

Attractive directions for future work include, although
are not limited to extending the algorithm for compu-
tations on various surfaces, which is currently under-
way, as well as its adaptation for working on varying
user-prescribed element sizes. In the first case, the
extension of the algorithm includes a di↵erent compu-
tational procedure for the H function and an updated

scheme for dealing with limit cycles and T-junctions.
If the anisotropic quad mesh is required, two scalings
for the cross-field must be defined instead of only one
like in our case.

Geometry Edge length Mesh quality

⌘ ⌘! ⌧
Figure 3 0.05 0.96 0.74 88.16
Figure 4 0.02 0.98 0.40 98.39
Model 1 0.05 0.96 0.34 93.38
Model 2 0.05 0.94 0.47 89.44
Model 3 0.05 0.94 0.52 89.19
Model 4 0.20 0.98 0.76 96.93
Model 5 0.20 0.98 0.63 96.94
Model 6 0.05 0.88 0.70 48.91
Model 7 0.02 0.98 0.78 98.78
Model 8 0.02 0.97 0.51 98.28
Model 9 0.02 0.98 0.74 96.36
Model 10 0.02 0.97 0.37 95.03

Table 1: The quality of obtained meshes: average
quality of elements under ⌘, the worst element’s qual-
ity under ⌘! and percentage of elements with quality
higher than 0.9 under ⌧ . Element’s quality is adopted
from [47], and is a measure of the deviation of ele-
ment’s angle from ⇡

2 .
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direction field design.” ACM Transactions on
Graphics (TOG), vol. 27, no. 2, 1–13, 2008

[15] Vaxman A., Campen M., Diamanti O., Panozzo
D., Bommes D., Hildebrandt K., Ben-Chen M.
“Directional field synthesis, design, and process-
ing.” Computer Graphics Forum, vol. 35, pp. 545–
572. Wiley Online Library, 2016

[16] Diamanti O., Vaxman A., Panozzo D., Sorkine-
Hornung O. “Integrable polyvector fields.” ACM
Transactions on Graphics (TOG), vol. 34, no. 4,
38, 2015

[17] Crane K., Desbrun M., Schröder P. “Trivial con-
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Theorem for simply connected domains (p-
harmonic setting).” Transactions of the American
Mathematical Society, vol. 371, no. 4, 2307–2341,
2019

[44] Winslow A.M. “Numerical solution of the quasi-
linear Poisson equation in a nonuniform triangle
mesh.” Journal of computational physics, vol. 1,
no. 2, 149–172, 1966

[45] Knupp P.M. “Winslow smoothing on two-
dimensional unstructured meshes.” Engineering
with Computers, vol. 15, no. 3, 263–268, 1999

[46] Thompson J.F., Soni B.K., Weatherill N.P. Hand-
book of grid generation. CRC press, 1998

[47] Remacle J.F., Lambrechts J., Seny B., Marchan-
dise E., Johnen A., Geuzainet C. “Blossom-Quad:
A non-uniform quadrilateral mesh generator us-
ing a minimum-cost perfect-matching algorithm.”
International journal for numerical methods in
engineering, vol. 89, no. 9, 1102–1119, 2012

116


