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ABSTRACT

E�cient algorithms for solving optimal transport problems are important for measuring and optimizing distances
between functions. In the L2 semi-discrete context, this problem consists of finding a map from a continuous density
function to a discrete set of points so as to minimize the transport cost, using the squared Euclidean distance as the
cost function. This has important applications in image stippling, clustering, resource allocation and in generating
blue noise point distributions for rendering. Recent algorithms have been developed for solving the semi-discrete
problem in 2d and 3d, however, algorithms in higher dimensions have yet to be demonstrated, which rely on the
e�cient calculation of the power diagram (Laguerre diagram) in higher dimensions. Here, we introduce an algorithm
for computing power diagrams, which extends to any topological dimension. We first evaluate the performance
of the algorithm in 2d � 6d. We then restrict our attention to four-dimensional settings, demonstrating that our
power diagrams can be used to solve optimal quantization and semi-discrete optimal transport problems, whereby a
prescribed mass of each power cell is achieved by computing an optimized power diagram.

Keywords: Voronoi diagram, power diagram, Laguerre diagram, semi-discrete optimal transport, high
dimensions, quantization.

1. INTRODUCTION

The problem of transporting mass from one location
to another so as to minimize total cost was studied
by Gaspard Monge in 1781 [1]. More generally, this
problem consists of finding a map between two mea-
sures, and can be applied to problems in image pro-
cessing [2, 3, 4, 5, 6, 7], machine learning [8] geomet-
ric processing [9], rendering [10, 11], resource alloca-
tion [12] and particle-based simulations [13, 14]. This
problem also appears in the solution to partial di↵er-
ential equations, specifically when the two measures
are continuous - see for example, the seminal work of
Benamou and Brenier [15].

Another (possibly more important) application is Vil-
lani’s example of transporting bread from bakeries to
cafés [16]. There are a discrete number of bakeries,
each with a specific baking capacity, and there are a
discrete number of cafés – see Fig. 1. One may wish to

distribute bread from bakeries to cafés so as to mini-
mize the transport cost (Fig. 1a). This is a fully dis-
crete optimal transport problem, since both the input
and output measures are discrete. This type of prob-
lem is important in shape- and image-matching prob-
lems, supply chain management and clustering [17].
The revived interest in solving these types of optimal
transport problems is due to the introduction of e�-
cient algorithms that enable the computation of an op-
timal transport map for large data sets. These meth-
ods are mostly based on the idea of entropic regu-
larization, a relaxation of the dual Kantorovich prob-
lem [18]. A noteworthy algorithm for solving this dis-
crete problem is known as the Sinkhorn-Knopp algo-
rithm [19].

If, instead, we can construct a model for a continu-
ous population density across the city, we may wish to
partition the city so as to equidistribute the bread de-
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(a) Discrete optimal transport problem. Some cafés may
be a in a busy part of town and require a lot of bread
to be delivered.

(b) Semi-discrete optimal transport problem. The city
is divided such that each café serves an equal population
(integral of the population density over region).

Figure 1: Motivation for studying optimal transport: (a) transporting bread from bakeries to cafés and (b) assigning
a population (with an assumed continuous density model) to cafés based on distance.

mand using the distance from the population to each
café (Fig. 1b). This would be a semi-discrete optimal
transport problem. If the cost function is the squared
Euclidean distance, then we have an L2 semi-discrete
optimal transport problem. The optimal transport
problem then consists of finding this partition such
that every café has the same bread demand.

The solution to the latter problem can be obtained
with a power diagram (or Laguerre diagram). The
power diagram is a generalization of the Voronoi dia-
gram in which sites are equipped with weights that
control the power distance from a point to a par-
ticular site. The weights on these Voronoi sites can
be tuned such that each region (a power cell) has
an equal mass under the input density measure. In
1987, Aurenhammer observed that a power diagram
can be computed via the restriction of a Voronoi di-
agram in a higher dimensional space [20, 21]. That
is, the power diagram is the intersection of a higher-
dimensional Voronoi diagram with our domain (in the
bakery example, the city) embedded to a higher di-
mensional space. This concept of embedding has also
been studied to achieve anisotropic Voronoi diagrams
and meshes [22, 23, 24, 25, 26, 27]. In particular, Lévy
and Bonneel introduced the security radius theorem
which enabled the fast computation of the restricted
Voronoi diagram [23]. In 2015, this technique was
used for semi-discrete optimal transport in three di-
mensions, and has since been used in fluid simulations
[13, 14] and astrophysics applications [28]. Power di-
agrams have also proven useful for computer graph-
ics applications such as image stippling [2, 3, 4, 5], in
which a blue noise sampling distribution is desirable

to reduce aliasing e↵ects that are produced by a regu-
lar sampling distribution, but produces better results
than a white noise distribution. Optimal transport has
also recently been used to obtain blue noise sampling
distributions for rendering applications [10, 11].

Software implementations for computing power dia-
grams are available in geogram [29], Voro++ [30] and
CGAL [31, 32] in two and three dimensions. These im-
plementations often rely on clipping Voronoi polygons
or polyhedra using algorithms such as Sutherland-
Hodgman re-entrant clipping [33], which are di�cult
to extend to a higher-dimensional setting. A demon-
stration of the power diagram calculation in four or
higher dimensions has yet to be demonstrated. We
make use of a simple result from polytope theory to
convert between a facet-based and vertex-based rep-
resentation of the power cells [34, 35]. It is well
known that the number of vertices in a power cell
grows exponentially with dimension, but the compu-
tation of the power diagram for semi-discrete optimal
transport is nonetheless useful for higher-dimensional
applications, particularly spatio-temporal simulations
of partial di↵erential equations, which would require
four-dimensional power diagrams. Furthermore, Lévy
and Bonneel’s security radius theorem enables an ef-
ficient, emabarassingly parallel computation of the
power cells, which makes the computation tractable
in four dimensions.

The goal of this paper is to develop the theory and de-
scribe an algorithm for computing higher-dimensional
power diagrams for semi-discrete optimal transport.
To our knowledge, this is the first demonstration of an
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algorithm for higher-dimensional power diagrams (in
terms of topological dimension) in the literature. We
begin by reviewing the necessary background on semi-
discrete optimal transport and power diagrams (Sec-
tion 2) and then present our algorithm for computing
power diagrams in a dimension-independent manner
(Section 3). We evaluate the performance of the al-
gorithm in 2d � 6d (Section 4) and then apply the
algorithm to quantization and L2 semi-discrete opti-
mal transport in four dimensions (Section 5), success-
fully demonstrating how a uniform target mass can be
achieved under a prescribed density function.

2. BACKGROUND

Let us briefly review the optimal transport problem.
For a more complete review, we encourage the in-
terested reader to see the works of Lévy, [13, 36],
Peyré [8], Santambrogio [37] and Villani [16, 38]. The
optimal transport problem consists of finding a map
that transports a probability measure µ supported
on a d-dimensional domain X ⇢ Rd onto another
probability measure ⌫ supported on another domain
Y ⇢ Rd. The Monge formulation seeks the transport
map T : X ! Y from the following minimization state-
ment:

T =argmin
T

Z

X

c(x, T (x)) dµ(x),

subject to :

8B ⇢ Y, µ(T�1(B)) = ⌫(B),

(1)

where c(·, ·) : X ⇥ Y ! R is the cost of transporting
mass from X to Y. The constraint on T is a statement
about conservation of mass for any Borel set B ⇢ Y.

Kantorovich introduced a relaxation of the original
Monge problem of Eq. 1, in which the transport map is
replaced by a transport plan [39], thereby reformulat-
ing Monge’s problem as a linear programming problem
with convex constraints.

2.1 Semi-discrete optimal transport

In the semi-discrete setting, the source µ is a contin-
uous measure, and the target measure ⌫ is discrete,
i.e. it is a sum of N Dirac masses: ⌫ =

PN
i=1 ⌫i�yi .

These Dirac masses are each located at a site yi 2 Y
where Y 2 Rd⇥N can be interpreted as a matrix in
which each column contains the coordinates of a site
yi. The power cell Pi(Y,w) for the Dirac mass at yi

is defined as

Pi(Y,w) = {x 2 X | 8j, c(x,yi)� wi  c(x,yj)� wj} .
(2)

The Power Diagram (or Laguerre Diagram) is then
the union of all power cells, which is a partition of X .

We now restrict our attention to the case in which the
transport cost is the squared Euclidean distance, so
c(x,yi) = ||x � yi||

2. The dual Kantorovich formula-
tion can be stated as a maximization of the following
energy functional:

E(Y,w) =
NX

i=1

Z

Pi(Y,w)

⇢(x)(||x� yi||
2
� wi) dx+

NX

i=1

⌫iwi.

(3)

where we have replaced the mass dµ(x) = ⇢(x)dx in
terms of the prescribed density ⇢(x).

2.2 Optimizing the transport map

In this paper, we will consider two settings: (1) we
want to optimize the sites Y to minimize E and (2)
we want to optimize the weights w so as to maximize
E. The former problem is known as quantization; a
notable algorithm is Lloyd relaxation [40, 41] in which
sites are iteratively moved to the centroids of their
associated cells. That is, at each iteration of Lloyd
relaxation, each site yi is updated to it’s centroid ci:

ci =

R

Vi(Y)

⇢(x)x dx

R

Vi(Y)

⇢(x) dx
. (4)

Note that we have replaced Pi(Y,w) = Vi(Y) =
Pi(Y,0) - i.e. we recover the Voronoi diagram when
the weights are all zero. Lloyd relaxation is slow to
converge, thus a gradient-based method is often em-
ployed, which requires the gradient of E with respect
to the sites yi:

dE
dyi

= 2mi(yi � ci), (5)

where mi is the mass of the cell (the denomina-
tor in Eq. 4). Some Newton-based methods have
been proposed, which requires the computation of
the Hessian d2E/dyidyj [13]. For simplicity, we use
a quasi-Newton approach, specifically the L-BFGS
method [42, 43].

In the second setting, we wish to maximize Eq. 3 by
optimizing the N weights w. We can treat this as a
minimization of �E(Y,w), and use the derivatives:

dE
dwi

= ⌫i �

Z

Pi(Y,w)

⇢(x) dx = ⌫i �mi, (6)

where ⌫i is the target (prescribed) mass of the power
cell Pi(Y,w). Since the energy is concave, it admits
a unique maximizer [13]. Previous works have ana-
lyzed Newton-based approaches [44] for optimizing the
weights, as well as multi-scale methods for large scale
transport problems [45]. These approaches have been
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restricted to two- and three-dimensions due to exist-
ing software implementations for computing power di-
agrams [29, 30, 31, 32]. Here we strive to compute
power diagrams in any dimension to support the solu-
tion of higher-dimensional semi-discrete optimal trans-
port problems.

3. POWER DIAGRAMS IN HIGHER
DIMENSIONS

Given N input sites Y = {yi | yi 2 Rd
}
N
i=1 and some

weights w 2 RN (a scalar weight is associated with
each site), our goal is to compute the power diagram
(with cells defined by Eq. 2) restricted to the domain
X ✓ Rd. This domain can either be specified as a
mesh of d-polytopes or d-simplices, therefore, the term
“restricted” means that we intersect X with Pi(Y,w)
for each power cell.

Existing software implementations have been re-
stricted to two- and three-dimensions and use geomet-
ric algorithms such as Sutherland-Hodgman re-entrant
clipping [33] to compute the intersection of a polygon
or polyhedron with a Voronoi bisector. The latter is
needed in order to compute the vertex coordinates of
a clipped polyhedron so as to apply the security ra-
dius theorem [23] and determine if clipping should be
terminated. Here, we introduce an alternative view of
the clipping procedure, which extends to any dimen-
sional domain X . Before describing our algorithm, we
need a “simple” result from polytope theory.

3.1 Voronoi polytopes are simple

Our algorithm relies on the fact that Voronoi poly-
topes are simple, since they are the duals of Delaunay
simplices. This enables the conversion between a facet-
based and vertex-based representation of a Voronoi
polytope. A convex d-dimensional polytope P can be
described as the intersection of m halfspaces. Thus
each point in the polytope can be described as the
bounded solution set of m linear inequalities [34]

H(P ) = {x 2 Rd
| AT (x� x0)  0}, (7)

where each column of A 2 Rd⇥m represents the nor-
mal to a facet. This is known as the H-Representation
or HRep for short, denoted by H. The vertex enumer-
ation problem consists of converting the HRep to the
V-Representation (VRep, denoted by V), which is a
description of the polytope as the convex hull of its n
vertices:

V(P ) = conv(V), (8)

where V 2 Rd⇥n is a matrix with each vertex vi 2 Rd

stacked columnwise.

In the following, assume we have information regard-
ing which facets are incident to every vertex, which
is stored in the vertex-facet-incidence matrix, and will
be denoted as F(·) : N ! Zk, for some k � 0. Ob-
serve that a vertex v is identified using a nonnega-
tive integer, whereas a facet b is labeled as an integer.
This enables the distinction between a Voronoi bisec-
tor (b � 0) between two sites, and a mesh facet (b < 0),
which is a (d�1)-dimensional facet of the input mesh.
In order to compute the intersection of a d-polytope
with a halfspace, we need the following definition from
Henk [34].

Definition 1 (simple polytope). A d-polytope P is
said to be simple if every vertex is incident to exactly
d facets. A property of simple polytopes is that their
dual polytopes are simplices.

Thus, for Voronoi polytopes, F(·) : N ! Zd (i.e. k =
d). We then have the following result, which is critical
for our intersection algorithm.

Corollary 1. The edges E(P ) can be identified from
the following relation on V(P ):

E(P ) =
�
e = (v0, v1)

�� |F(v0) \ F(v1)| = d� 1
 
.
(9)

The result is certainly true for d  4 [34], but is im-
portant to consider for higher-dimensions. For simple
polytopes, the dual of P is a simplex (the Delaunay
simplex) from which the entire set of facets is triv-
ially constructed. Furthermore, the hierarchy of the
facets of a polytope can be obtained from the corre-
sponding facet hierarchy of its dual [34], which con-
tains the edges. Therefore, the edges E(P ) of a simple
d-polytope P can be derived purely from the vertex-
facet-incidence matrix of P by traversing the facet-
hierarchy of the dual simplex in reverse order. Thus
we can determine if there is an edge between two ver-
tices in the VRep of P if they share d � 1 common
facets.

For example, in Fig. 2, F(vi,1) = {b1, b2} and F(vi,2) =
{b2, b3}. Since vertices vi,1 and vi,2 share a single com-
mon facet (b2), then they also share an edge. However,
vertices vj,3 and vj,1 do not share an edge because
F(vj,3) \ F(vj,1) = ;. Furthermore, we can identify
that vertices vi,2, vj,5 and vk,0 are all symbolically
equivalent because they share a common bisector, thus
enabling these vertices to be merged as a single ver-
tex if necessary. In fact, these vertices represent the
Delaunay simplex between sites yi, yj and yk.

Each Voronoi cell will be computed from the intersec-
tion of a finite number of halfspaces, thus it is impor-
tant to ensure that each cell remains a simple polytope
after intersecting it with a halfspace, so that we can
iteratively apply Eq. 9 for each bisector.
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Figure 2: Computing the edges of a polytope from
the vertex-facet-incidence relations. Three Voronoi
cells are shown in the di↵erent colors and bisectors
(possibly shared) are labeled in the squares.

Proposition 1. A simple d-polytope P ⇢ Rd inter-
sected with a halfspace H

+ produces a simple polytope.

Proof. Assuming the intersection of P with H
+ is

non-empty, it su�ces to show that every vertex of
the new polytope will be incident to exactly d facets.
One way of describing the halfspace H

+ is by using
a unique point x0 and normal to the dividing hyper-
plane n 2 Rd. Since P is simple, we can determine
its edges E(P ). Every vertex of the original polytope
v 2 V(P ) can then be classified as to whether it is in
the halfspace as

V
+(P ) =

�
v 2 V(P )

�� (x(v)� x0) · n > 0
 
, (10)

where x(v) 2 Rd are the coordinates of vertex v. The
vertices created from the intersection are then com-
puted by intersecting each edge with the dividing hy-
perplane (note we can filter which edges are intersected
by finding edges with one vertex in V

+(P ) and one
that is not). Denote the set of intersection vertices
as S, therefore, the new vertices of the polytope Q
are V(Q) = V

+(P ) [ S. There are two cases to con-
sider. First, the vertices V

+(P ) are clearly adjacent
to d facets since they were not a↵ected by the inter-
section. Second, the vertices in S were each created
from the intersection of an edge with the hyperplane.
Since edges are adjacent to d�1 facets (Eq. 9) and the
dividing hyperplane, itself, defines a facet of Q, then
each intersection vertex is adjacent to d facets.

We are now ready to describe our algorithm for com-
puting power cells.

3.2 Computing the power cells

In fact, we simply compute the Voronoi cells! As
noted earlier, Aurenhammer observed that the power
diagram is the intersection of a higher-dimensional
Voronoi diagram with our d-dimensional space lifted
to the same ambient dimension of this Voronoi dia-
gram [20, 21]. We use the result of Lévy [36] to lift
the Voronoi sites (equipped with weights) to a (d+1)-
dimensional space, thereby obtaining Z 2 R(d+1)⇥N in
which

zi =
⇣
yT
i ,

p
max(w)� wi

⌘T
, 8i = 1, 2, . . . , N.

(11)
We additionally need to lift our domain of interest
to Rd+1, which is done by simply appending a zero
to the coordinates of the domain (the vertices of the
mesh). As a result, we only need to compute the
Voronoi diagram in Rd+1. That is, the power cells
are Pi(Y,w) = Vi(Z).

Although the domains we study in this paper can be
entirely described with a single polytope (a d-cube),
we will consider the general case in which the domain
to be clipped against is represented as a simplicial
mesh. The mechanics of the algorithm are the same,
but this description lends well to future work for the
interested reader.

We begin with a single element, here represented by
a d-simplex . The vertex-facet incidence relations
for each vertex of  are the mesh facets (the (d � 1)-
simplices) incident to a particular vertex. As men-
tioned earlier, these mesh facets are labeled with neg-
ative integers so as to distinguish them from Voronoi
bisectors. Our goal is to compute the Voronoi cell asso-
ciated with site zi, clipped with the element . In the
following description, please follow along with Fig. 3.

We begin by clipping  with the Voronoi bisector H1

defined by zi and it’s nearest neighbor, zj1 . In order to
determine the clipped polytope (in red), we first iden-
tify the edges of  using Eq. 9. Next, we determine
which edges have vertices on either side of the Voronoi
bisector H1. Those with vertices on either side of H1

are then intersected with H1, creating new vertices q0
and q1. We then set F(q0) = F(v1) \ F(v2) [ {bi,j1},
where bi,j1 is the unique integer label assigned to the
Voronoi bisector between sites i and j1. Furthermore,
F(q1) = F(v0) \ F(v2) [ {bi,j1}. The geometric coor-
dinates of q0 and q1 are computed and used to check
if clipping should be terminated, using the radius of
security theorem [23].

If clipping should continue, we then proceed to the
next nearest neighbor of site zi, which is zj2 . A
similar procedure ensues, this time, starting with the
polytope defined by vertices {v1, q0, q1, v2}. Extract-
ing the edges (Eq. 9) and intersecting those with ver-
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(d) Clipping with H3.

Figure 3: Computing the intersection of a mesh element (here, a simplex) with a Voronoi cell defined by the site
zi. Clipping starts with the Voronoi bisector H1 defined by the nearest neighbor to site zi (zj1) and proceeds to the
next neighbors, thus clipping by H2 and then H3 from left to right.

tices on either side of H2 reveals that q0 is no longer
in the Voronoi cell. New vertices q2 and q3 are in-
troduced from the intersection of the edges with H2.
Then F(q2) = F(v0) \ F(v1) [ {bi,j2} and F(q3) =
F(q0) \ F(q1) [ {bi,j2}.

Proceeding in a similar fashion to the next nearest
neighbor zj3 clips the current polytope defined by ver-
tices {v0, q2, q3, q1} (no need for them to be ordered
counterclockwise). We then end up with the polytope
{v0, q2, q4, q5, q1} where F(q4) = F(q2)\F(q3)[{bi,j3}
and F(q5) = F(q1) \ F(q3) [ {bi,j3}. We suppose the
clipping terminates after checking the coordinates of
this polytope with the radius of security theorem.

This procedure is described in Algorithm 1. The in-
puts to the algorithm are a Voronoi site zi, a mesh
element  and a nearest neighbor structure N that
computes the nearest sites upon request. This struc-
ture is initialized to 50 nearest neighbors at the start
of clipping - we expect well distributed mesh vertices
to have a simplex valency of 6 in 2d, 15 � 20 in 3d
and about 120 in 4d [46]. Whenever the bounds of the
nearest neighbors are reached, an additional 10 neigh-
bors are appended to the current neighbors. As we
will examine in the results section, the cost of comput-
ing the nearest neighbors is overshadowed by clipping,
simplex decomposition and numerical integration.

Clipping continues until the security radius is reached,
which is equal to twice the maximum distance from
any vertex in P to zi (we absorb the factor of 2 into
the definition of the radius of security - a slight modi-
fication of Lévy’s definition). Each edge is then inter-
sected with the bisector defined by sites zi and zj - the
jth nearest neighbor to zi. When an intersection oc-
curs, only one of e0 or e1 (the edge vertices) is in the
halfspace defined by H which includes zi (i.e. H

+).
This vertex, along with the intersection vertex is then
appended to the set of vertices defining the clipped
polytope Q, and the vertex-facet incidence relations

are updated.

In the current work, we parallelize the clipping proce-
dure over the Voronoi sites in contrast to a paralleliza-
tion over the mesh elements. The reason is because we
keep our domains are defined by a single d-cube but we
seek power diagrams defined by sometimes millions of
Voronoi sites. Furthermore, we parallelize the compu-
tation on the CPU, specifically with OpenMP, however
the computation is well suited for parallelization on
the GPU, which will be explored as future work.

Eq. 9 suggests that extracting the polytope edges is
quadratic in the number of vertices in the current
clipped polytope. Since the number of vertices in a
Voronoi polytope is exponential in the dimension of
the polytope, this could incur a significant computa-
tional cost - especially since this extraction is repeat-
edly performed until the radius of security is reached.
Therefore, we reduce the computational cost by (1) re-
taining any edges that lie entirely within H

+ (the side
of the hyperplane containing the site zi), (2) updating
the endpoints of any intersected edges with indices of
the new intersection vertices and (3) computing new
edges that lie exactly on H using Eq. 9. Step (3) is still
quadratic in the number of vertices that lie on H, but
since these define a (d� 1)-dimensional polytope, the
cost remains reasonable for our applications (d  6).

A note regarding exactness In this paper, we
are purely interested in the geometry of the power cells
and do not extract any topological information corre-
sponding to the dual Delaunay mesh. Although this
topological information could be extracted by merging
vertices that have identical symbolic information (e.g.
vertices vi,2, vj,5 and vk,0 in Fig. 2), this computation
is susceptible to numerical precision issues. Exact geo-
metric predicates, such as an orientnd function, sim-
ilar to Shewchuk’s orient2d and orient3d functions
could be used to detect cosphericities [47]. In the con-
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computeVoronoiCell

input: site zi, element , neighbors N
output: Voronoi cell as a d-polytope P

1 P   // initialize to domain element

2 j = 1 // start with nearest neighbor

3 zj = N (zi, j)
4 while ||zi � zj || < securityRadius(zi, P )
5 H H(zi, zj) // define bisector

6 Q ; // initial clipped polytope

7 E  E(P ) // from Eq. 9

8 for e = (e0, e1) 2 E

9 s0 = side(e0,H)
10 s1 = side(e1,H)
11 if s0 ⌘ s1 // no intersection

12 continue

13 p e0 or e1 (whichever has s > 0)
14 q e \H and set q  |Q|

15 F(q) F(e0) \ F(e1) [ b(H)
16 Q Q [ {p, q}

end

17 P  Q // update current polytope

18 j = j + 1 // proceed to next neighbor

19 zj = N (zi, j)
end

Algorithm 1: Computing the intersection of a mesh
element  with a Voronoi cell defined by a site zi.

text of our algorithm, the calls to the side function
on Lines 9 and 10 should be replaced with a side rd

function [48] which computes the intersection of a r-
dimensional simplex with the bisector H. In order to
determine which r-simplex should be used, we sim-
ply need to track which simplex facets of the original
mesh are incident to each vertex. This can be done by
tracking the “simplex vertices” of every clipped ver-
tex: S(v). Any time an intersection point is intro-
duced, the new vertex inherits all the simplex vertices
of the endpoint edge vertices. For example, in the
rightmost diagram of Fig. 3, S(q5) = S(q3) [ S(q1) =
S(q0)[S(q1) = {v0, v1, v2}, meaning q5 is the intersec-
tion of the d-dimensional simplex  = (v0, v1, v2) with
the bisectors H1 \H2 \H3.

3.3 Numerical integration

Computing the objective function and gradients of
Eqs. 3, 5 and 6 requires the calculation of integrals
over the resulting Voronoi polytopes. To perform the
integration, we decompose the d-polytopes into a set
of d-simplices by introducing a vertex at the centroid
of the polytope and then recurse through the (d� 1)-

facets, continuously introducing vertices at these facet
centroids until the edges are reached (at which point
the triangulation is trivial). The simplicial decomposi-
tion of the d-polytope is obtained by reconnecting the
simplicial facets with the centroids. This mesh of d-
simplices is then used to perform the integration with
numerical quadrature rules of Stroud [49]. Although
this evaluation is also performed in parallel over the
integration simplices, the integral evaluation is a bot-
tleneck in our algorithm, which will be discussed in
the results section.

3.4 Visualizing the power diagram

In the results section, we will present visualizations of
four-dimensional power diagrams, thus it is necessary
to briefly describe our procedure for doing so. Some
previous work in 4d mesh visualization includes the
work of Caplan [46] and Belda-Ferŕın [50].

Our method for visualizing a d-dimensional mesh first
consists of identifying which polytopes of this mesh
are cut by some input viewing volume, represented as
a (d � 1)-dimensional hyperplane with point x0 and
normal n. Next, each polytope P must be intersected
with the hyperplane. We cull polytopes that are not
clipped if all their vertices lie on the same side of the
hyperplane, using the predicate in Eq. 10. Otherwise,
the polytope is clipped by the hyperplane. We then
identify which edges have vertices on either side of the
hyperplane, and then compute the intersection point
of the hyperplane with the edge. Each intersection
point is then appended to a list of vertices that lie
exactly on the hyperplane, which defines a (d � 1)-
dimensional polytope that can be directly visualized if
a suitable visualization dimension (such as 2d or 3d)
is reached.

For high-dimensional (d > 4) applications, a recursive
procedure can be applied to this (d � 1)-dimensional
mesh along with a (d � 2)-dimensional hyperplane.
In the results section, we only visualize 4d meshes
through (1) the intersection of a 3d viewing volume
or (2) a second intersection with a 2d clipping plane.
In order to view the polyhedra resulting from the inter-
section, we tetrahedralize the convex polyhedra using
a Delaunay triangulator [51] and visualize the mesh
edges by applying Eq. 9 to extract the edges of each
polyhedron clipped to the 3d viewing volume.

4. PERFORMANCE

In this section we evaluate the performance of our al-
gorithm for computing d-dimensional power diagrams
(of d-polytopes) for d = 2 to d = 6. All tests are per-
formed with an Intel Xeon W-2145 CPU at 3.70GHz
with 8 cores (16 threads).
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Our first performance test consists of distributing N
points within a unit d-cube and measuring the time to
compute the power diagram. We consider two point
distributions: (1) a completely random white noise
distribution and (2) a blue noise distribution. The
reason we consider the former is because the nearest
neighbor calculation is more costly for a white noise
distribution of points, whereas the number of near-
est neighbors is more uniform in the case of a blue
noise distribution. The blue noise sampling distri-
butions were obtained with the SpokeDarts software
of Mitchell et al. [52]. An example of the resulting
Voronoi diagrams for four-dimensional white and blue
noise point distributions, sliced along the fourth di-
mension, are shown in Fig. 4.

Performing the calculation in 2- through 6-dimensional
domains (where the ambient dimension is equal to the
topological dimension of the domain) reveals a good
scaling of the algorithm in low dimensions, particular
in 2d through 4d. Fig. 5 reveals that our calculation
is more costly for random point distributions than for
blue noise distributions. Also observe that the cost of
computing the Voronoi diagram in 5d and 6d is signif-
icantly higher than in low dimensions, which is due to
the fact that the number of vertices in a Voronoi poly-
tope grows exponentially with the dimension. Fig. 6
shows how the number of vertices and facets grows
with the input number of points (Voronoi sites) for a
white noise distribution.

In our second performance study, we focus on dimen-
sions 2-4 and compute (1) the time to clip the Voronoi
cells (as in the previous study), (2) the total time de-
voted to compute nearest neighbors, (3) the time de-
voted to decomposing the polytopes into integration
simplices and (4) the time to perform the numerical
integration for various quadrature orders q. The re-
sults are shown in Table 1. In 2d (polygons) and 3d
(polyhedra), the cost of the Voronoi diagram calcula-
tion outweighs any other calculation, but is still rel-
atively fast for one million points in 2d (25 seconds).
The cost of decomposing the Voronoi cells into sim-
plices is roughly one fifth the cost of computing the
Voronoi diagram in 3d and 4d. In higher dimensions,
the cost of integration is limiting and begins to exceed
the cost of computing the Voronoi diagram, even for
low quadrature orders (q > 2). In general, the cost of
computing the Voronoi diagram is even lower than the
results shown in Table 1 (which is for white noise dis-
tributions) once the point distributions exhibit more
structure.

5. APPLICATIONS

We now use our power diagrams to solve quantiza-
tion and semi-discrete optimal transport problems in
four-dimensional domains. The di↵erence between the

Table 1: Performance statistics for white noise in
2d�4d for a varying number of Voronoi sites (N). The
timing results (in seconds) are broken into (1) the time
to compute the Voronoi diagram (tvor), (2) the time
devoted to computing nearest neighbors (tknn), (3) the
time to decompose the d-polytopes into d-simplices
(ttri) and (4) the time to perform the numerical in-
tegration a particular quadrature order q (tq).

d N tvor tknn ttri tq=2 tq=3 tq=4

2 10k 0.037 0.085 0.065 0.029 0.039 0.049
2 100k 2.7 0.71 0.46 0.17 0.26 0.40
2 1M 25 12 4.2 1.3 2.2 3.5
3 10k 2.8 0.10 0.41 0.35 1.0 2.2
3 100k 29 1.5 4.4 3.4 10 23
3 250k 71 5.2 11 8.6 25 59
4 1k 4.0 0.027 0.82 1.6 7.3 23
4 10k 50 0.40 9.8 18 87 270
4 15k 78 0.68 15 28 130 420

two problems is that (1) in quantization, we optimize
Voronoi site coordinates and (2) in optimal transport,
we optimize the weights on Voronoi sites.

5.1 Quantization

Here, our goal is to compute an optimal point distri-
bution for some prescribed density function. As we
observed in the performance study, the cost of evalu-
ating the integrals is prohibitive for a large number of
points. As a result, we design the densities to be inte-
grated more accurately with lower quadrature orders.

optimizePoints(N, ⇢(x))

input: number of sites N , density ⇢(x)
output: optimized point distribution Y

1 Y  randomly sample N points in domain ⌦
2 iter 0
3 while iter < nb iter

4 compute RVD: Vor(Y) \ ⌦ (Section 3.2)
5 compute mass and centroids in Eq. 4
6 if lloyd // use Lloyd relaxation

7 update x to current centroids
8 else // use L-BFGS update

9 compute gradients dE/dyi using Eq. 5
10 perform L-BFGS update on x

end

end

Algorithm 2: Optimizing a point distribution ac-
cording to an input density measure, using either
Lloyd relaxation or an L-BFGS update. In our ap-
plications, the input domain ⌦ is the unit d-cube rep-
resented as a polytopal mesh with a single element.
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(a) White noise. (b) Blue noise.

Figure 4: Four-dimensional Voronoi diagrams for white and blue noise point distributions for 16, 332 sites embedded
in 4d. The images represent the slices of the Voronoi diagram along a hyperplane at t = 0 where t is the fourth
dimension.
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Figure 5: Time to compute the Voronoi diagram in
2d-6d for white and blue noise distributions with a
varying number of points (Voronoi sites).

We consider three density measures. The first is a
uniform distribution ⇢u(x) = 1 (the optimized Voronoi
cells should appear uniform). The second density mea-
sure is a Gaussian

⇢g(x) =
1p

(2⇡)4 det⌃
exp

✓
�
1
2
(x� µ)T⌃�1(x� µ)

◆

(12)
where µ = (0.5, 0.5, 0.5, 0.5)T and ⌃ =
diag(0.02, 0.02, 0.02, 0.02). In this case, we ex-
pect smaller Voronoi polytopes near µ, which then
increase in distance around this mean point. The
third density measure we consider is that which
describes an expanding sphere, which traces the
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Figure 6: Total number of vertices (circles) and facets
(squares) for Voronoi diagrams computed from a ran-
dom point distribution in 2d�6d for a varying number
of input points (Voronoi sites).

geometry of a hypercone in 4d. In particular, this
density measure is

⇢c(x) = 100/(h2 + 0.001) (13)

where h is the distance to the cone defined by r(t) =
r0+ t · tan(↵) where t represents the fourth coordinate
in the domain (to be interpreted as time). Please re-
fer to Fig. 7 for the geometry of the cone - note that
r0 = 0.4 and r1 = 0.7. Note that this density mea-
sure is e↵ectively two-dimensional in an r � t coordi-
nate system. Rotational symmetry about the t axis
leads to the cone geometry. In fact, when slicing the
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Figure 7: Definition of the hypercone in a radial-
temporal coordinate system. The sphere starts with a
radius of r0 = 0.4 at t = 0 and expands to a radius of
r1 = 0.7 at t = 1.

resulting Voronoi diagram (with points uniformly dis-
tributed according to ⇢c(x)), we should expect to see
smaller cells clustering around the geometry of a 3d
cone when slicing along a non-constant t hyperplane,
but should expect to see smaller cells clustering around
a 3d sphere at constant t hyperplanes.

Figure 8: Optimized four-dimensional Voronoi dia-
gram sliced at t = 0 (where t is the fourth dimension)
for the case of a uniform density, ⇢u(x).

We optimize four-dimensional point distributions with
N = 10, 000 points using Lloyd relaxation [40] the
gradient-based L-BFGS optimizer [43] - this procedure
is outlined in Algorithm 2. After 100 iterations (func-
tion calls in the nlopt optimizer), the point distribu-
tions indeed exhibit a uniform distribution under the
prescribed density measure. Fig. 8 shows uniformly
distributed polytopes sliced along the t = 0 hyper-
plane. Fig. 10 shows the interior of a slice along the

t = 0.5 hyperplane for the Gaussian density. The clus-
tering of Voronoi cells around the mean is clear and
the cell sizes increases with distance from the mean.
Furthermore, the expected clustering around the hy-
percone is visible in Fig. 11. Specifically, when the
four-dimensional Voronoi diagram is sliced along a hy-
perplane with non-constant t (x = 0), we can see clus-
tering near a 3d cone. We can also see smaller poly-
topes clustered around a sphere when the optimized
Voronoi diagram is sliced at t = 0 (smaller sphere
with radius r0) and t = 1 (larger sphere with radius
r1). Fig. 9 demonstrates the convergence of the en-
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(a) Energy (Eq. 3 versus iteration.
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(b) Gradient norm (of Eq. 5) versus iteration.

Figure 9: Convergence of the energy and its gradi-
ent for Lloyd relaxation and LBFGS optimizer for all
three density functions (uniform, Gaussian, cone) con-
sidered in the quantization application.

ergy functional and gradient norm during the opti-
mization for both Lloyd relaxation (even though it is
not driven by the gradient) and the L-BFGS optimizer.
The data in each curve is normalized by the initial en-
ergy and gradient norm at the onset of the optimiza-
tion. The L-BFGS optimizer achieves a lower energy
and gradient norm for the uniform and cone density
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measures, but performs slightly worse than Lloyd re-
laxation for the Gaussian density. Nonetheless, the
results demonstrate the ability to obtain point distri-
butions that are uniform with respect to a prescribed
density function in 4d for a relatively large number of
points (N = 10, 000).

(a) Optimized Voronoi diagram sliced
at t = 0.5 with clipping plane shown.

(b) Optimized Voronoi diagram sliced
at t = 0.5, clipped at x = 0.5 (trans-
parent clipping plane shown in pink
above).

Figure 10: Optimized four-dimensional Voronoi dia-
gram sliced at t = 0.5 (where t is the fourth dimension)
for the case of a Gaussian density, ⇢g(x). The bottom
figure shows a slice (at x = 0.5) of the top figure, where
the clipping plane is defined by the transparent plane
shaded in pink.

5.2 Semi-discrete optimal transport

We now turn our attention to the problem of assigning
an equal mass (measured under some input density
function) to each Voronoi cell. We will study smaller
problem sizes because we do not currently implement

(a) Voronoi diagram slice at x = 0.

(b) Voronoi diagram slice at t = 0.

(c) Voronoi diagram slice at t = 1.

Figure 11: Optimized four-dimensional Voronoi dia-
gram sliced at t = 0, t = 1 (where t is the fourth di-
mension) and x = 0 for the case of a cone-like density,
⇢c(x). A three-dimensional cone is visible at x = 0
(where the smaller cells cluster), whereas the sphere
with initial radius r0 and final radius r1 is shown at
t = 0 and t = 1, respectively. Only one quarter of the
cone and spheres are visible within this domain.

a multiscale algorithm to initialize the weights for the
next “level,” although this would certainly accelerate
the convergence of the optimization as pointed out by
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optimizeWeights(N, ⇢(x))

input: number of sites N , density ⇢(x)
output: power cells with uniform mass

1 Y  optimizePoints(N, ⇢)
2 w 0
3 ⌫t  mt/N // mt is the total mass

4 for iter = 1 : nb iter

5 Z lift Y to Rd+1 (Eq. 11)
6 compute Vor(Z) \ ⌦ (Section 3.2)
7 compute energy and mass in Eq. 4
8 compute gradients dE/dwi using Eq. 6
9 perform L-BFGS update on w

with �E and �dE/dw
end

Algorithm 3: Optimizing the weights to achieve a
target mass according to an input density measure.
In our applications, the input domain ⌦ is the unit
d-cube represented as a polytopal mesh with a single
element.

Mérigot [45, 18] and Lévy [36]. We thus use N = 1000
points distributed within a four-dimensional domain.

The two density measures we consider here are (1)
a uniform density ⇢u(x) = 1 and (2) a spheri-
cal density ⇢s(x) = 1 + 100 ||x � µ||2 where µ =
(0.5, 0.5, 0.5, 0.5)T . In contrast to the previous sec-
tion which employed a Gaussian as the density mea-
sure, this spherical density is more accurately inte-
grated with lower quadrature orders, thus keeping the
computational cost reasonable for this demonstration.

Before optimizing the weights, we first optimize the
point distributions with the L-BFGS method (of the
previous section) to achieve a uniform distribution
with respect to the input density measure - see Al-
gorithm 3. We then obtain the total mass mt by inte-
grating the input density over the entire domain and
set the target mass ⌫t = mt/N for every site. Finally,
we optimize the weights by iteratively computing the
power diagram and integrating the quantities in Eq. 6
which are then passed to the L-BFGS optimizer to
determine the next set of weights.

The convergence of the energy functional and gradi-
ent norm (Eq. 6) is shown in Fig. 12a. Observe that
the optimization procedure exhibits a very fast conver-
gence near the 75th iteration. Furthermore, Fig. 12b
shows the distribution of mass at each iteration of the
optimization, normalized by the target mass ⌫t - thus
we strive for a normalized mass of 1 for each cell. Ini-
tially, the cell masses are distributed across a wide
range and converge to the target mass at about the

75th iteration. This demonstrates the ability of our
algorithm to achieve a target mass for each Voronoi
cell.
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(a) Gradient norm (of Eq. 6) versus iteration.

(b) Distribution of power cell mass versus iter-
ation.

Figure 12: Convergence of the energy gradient and
normalized mass for all the uniform and sphere-like
density functions considered in the semi-discrete opti-
mal transport application. The dashed line in Fig. 12b
represents the target mass.

6. CONCLUSIONS & FUTURE WORK

In this paper, we have presented the theory and imple-
mentation details for computing higher-dimensional
power diagrams, and demonstrated the first implemen-
tation for solving four-dimensional quantization and
L2 semi-discrete optimal transport problems which
seeks a uniform target mass of each Voronoi cell, mea-
sured under some input density function.

The performance of the algorithm was also evaluated
in up to six dimensions (the topological dimension
of the polytopes), which demonstrated a reasonable
scaling with the number of input points in dimen-
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sions 2 � 4. The cost of computing the Voronoi dia-
gram with a randomly distributed point set was higher
than that to compute the Voronoi diagram with a
point distribution that exhibited blue noise proper-
ties. Also, the cost of performing the numerical inte-
gration to compute gradients significantly outweighed
the cost of computing the power diagram, especially
for four-dimensional polytopes. Future work may con-
sist of deriving less expensive quadrature schemes in
higher dimensions, which is under way in the works of
Williams [53] and Frontin [54].

Furthermore, the cost of computing the power dia-
gram is higher than to compute the Voronoi diagram
because the introduction of weights lifts the points
to a unit codimensional Euclidean space, thereby in-
creasing the distance between sites and requiring sev-
eral more (possibly non-contributing) bisectors to be
clipped against. This is a failure case of the security
radius theorem, as pointed out by Sainlot et al. [55],
therefore, future work could consist of extending their
corner validation algorithm to the higher-dimensional
setting.

Our algorithm is also very well-suited for an imple-
mentation on the GPU, similar to the work of Ray et
al. [56] which demonstrated an e�cient 3d restricted
Voronoi diagram calculation on the GPU. Our algo-
rithm could also be made more e�cient by employing
a multiscale approach [45, 18] in the optimization of
the weights. It would also be useful to implement a
more robust optimization which avoids weights that
cause power cells to vanish.

Finally, our four-dimensional power diagrams could be
used to compute the transport distance between a data
set and a continuous density measure in both space
and time - Janati et al. recently consider a fully dis-
crete version of this problem [57]. Other applications
could include performing coupled space-time numeri-
cal simulations of physical phenomena.
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[29] Lévy B. “Geogram: A Programming Library of
Geometric Algorithms.”, 2016

[30] Rycroft C.H. “Voro++: A three-dimensional
Voronoi cell library in C++.” Chaos, vol. 19,
no. 4, 2009

[31] The CGAL Project. CGAL User
and Reference Manual. CGAL Edi-
torial Board, 5.2 edn., 2020. URL
https://doc.cgal.org/5.2/Manual/packages.html

[32] Karavelas M. “2D Voronoi Diagram Adaptor.”
CGAL User and Reference Manual. CGAL Edi-
torial Board, 5.2 edn., 2020

[33] Sutherland I.E., Hodgman G.W. “Reentrant
polygon clipping.” Communications of the ACM,
vol. 17, no. 1, 1974

[34] Henk M., Richter-Gebert J., Ziegler G.M. “Basic
Properties of Convex Polytopes.” Handbook of
Discrete and Computational Geometry, 2nd Ed.
2004

[35] Ziegler G.M. Lectures on Polytopes, vol. 152 of
Graduate Texts in Mathematics. Springer, 1995
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