
BUILDING DIRECTION FIELDS ON THE MEDIAL OBJECT TO
GENERATE 3D DOMAIN DECOMPOSITIONS FOR HEXAHEDRAL

MESHING

Dimitrios Papadimitrakis1, Cecil G. Armstrong1, Trevor T. Robinson1, Alan Le Moigne2,
Shahrokh Shahpar3

1School of Mechanical and Aerospace Engineering, The Ashby Building, Queen’s University of Belfast,
UK, BT95AH, dpapadimitrakis01@qub.ac.uk

2Group Business Services – IT, Product Development System, Rolls-Royce plc, Derby, England, UK,
DE248BJ

3Innovation Hub, Central Technology, Future Methods, Rolls-Royce plc, Derby, England, UK, DE248BJ

ABSTRACT

In this work, a novel method for creating decompositions of general 3D domains, suitable for hexahedral mesh generation is

presented. To accomplish this, frames and cross-fields are generated on top of the medial object of the domain. The geometrical

and topological information carried by the medial object, together with the directional information of the frames/crosses help

analyze the domain. By generating frames and cross fields on medial vertices, edges and faces based on touching vectors, a

directional field is constructed on top of the medial object. Based on it, critical lines in the domain called, singularity lines, are

identified. Starting from these, a complete line network is created on the interior of the domain. This network is extruded to the

boundary in order to create the boundary of high-quality partitioning surfaces that are used to decompose the domain into regions

appropriate for a high-quality hexahedral mesh. Examples are given to validate the method.

Keywords: Hex mesh, Medial Object, Frame fields, Cross fields, Singularity, Decomposition

1. RELATED WORK

Generating a structured mesh comprised of hexahedral

elements has been a topic of research since the 1970s.

Mapping methods were the first approach to be investigated

for simple geometries. Either by solving partial differential

equations [1] or by using algebraic interpolation techniques

[2], [3], they aim to create the mesh by mapping a regular

mesh in the parametric space to the physical space.

Nowadays these methods are mostly used after the

computational domain has been decomposed into mappable

sub-regions or blocks.

Plastering [4], is the 3D equivalent of the paving method in

2D [5]. Starting from a boundary quad mesh it gradually

constructs hex elements in an advancing front. While good

element quality could be achieved close to the boundary,

voids are created inside the volume which, often, cannot be

meshed with hex elements. To avoid additional constraints,

Staten et al. [6] proposed an extension which does not rely

on a boundary mesh. By advancing fronts inwards and

generating meshes on inner voids that define the boundary

mesh, they created hexahedral meshes for rather simple

geometries.

One of the most popular hex mesh generation algorithms is

sweeping. The basic concept of this algorithm is that a quad

mesh on a source face is extruded to a target face along a

specified direction [7]. This one to one sweeping algorithm

has been further improved through the years [8] to handle

complex shapes and even cases where there is more than one

source and/or target faces [9], [10]. However, when dealing

with many to many type sweeps, there remains a level of

domain decomposition/imprinting required to generate the

meshable regions.

366

Price et al. [11] used the 3D medial object to create a

decomposition of a solid into sub regions that can be easily

meshed by the midpoint subdivision technique. Using the

topological and adjacency information the medial object

provides, they came up with a set of 13 meshable solid

primitives, each with at most 8 faces, with each face having

between three and six sides. These primitives are placed

along medial vertices, edges and surfaces to create the

decomposition of the solid. In their second work [12] the

authors extend their work so that geometries with medial

surface degeneracies, shallow and concave edges can also be

analyzed. However, problems such as N-valent vertices and

objects with two sided faces still need to be investigated.

LayTracks3D [13] is a more recent work which also relies

on the 3D medial object. By combining the medial object

and the advancing front method hex-dominant meshes are

created. Using medial axis junction curves together with the

medial radii, simpler regions called corridors are created.

After meshing medial surfaces inside the corridors, a further

subdivision is provided with the creation of the so-called

tracks. The advancing front method is then used to form the

final hex dominant mesh. The author also gives information

on how this method can be extended to create all-hex meshes

and how it can be used for the meshing of assemblies with

the creation of imprints on the medial object. The main

drawbacks of these technique are a) the robust computation

of the medial surface is still challenging b) a small change in

object geometry can radically change the topology of the

medial surface and, therefore, the resulting mesh. Finally,

one more algorithm that uses skeletons of models to generate

hexahedral meshes is that described by Livesu et al. in [14].

In this work high quality hexahedral meshes are generated

after a tubular structure that resembles the initial geometry

is constructed based on a curve skeleton. However, the

method described is limited in models that admit a skeletal

representation.

Nieser et al. [15] first proposed a method for generating a

hexahedral mesh of a solid subjected to boundary alignment

constraints by finding a volume parameterization of a

manually created block decomposition of the domain. The

notion of a frame field built upon a tetrahedral mesh that

guides the parameterization was introduced and several

conditions of the so called singularities and the gradient of

the frame field where given. The automatic, fast and robust

generation and correction of frame fields for general

domains was the focus of many works to follow [16]–[20].

Liu et al. [21]recently proposed a method to generate frame

fields with manually prescribed singularity graphs, thus

giving the opportunity to manually correct topological

invalid singularity graphs and then generate a correct frame

field. The fundamental properties of hex meshes were first

studied by Price et al. [11], [12]. In [21] these properties

were used from a slightly different perspective to derive

local and global conditions that are necessary for a hex-

meshable frame field. Fogg et al. [22] also proposed

conditions that a network of singularities must respect.

However, the topology of the singularities of the frame fields

that can be automatically computed by current methods are

still not guaranteed to imply a valid hexahedral mesh even

for simple geometries [23].

Having obtained a high-quality frame field, Kowalski et al.

[24] suggested that the singularity graph of the frame field

can be immediately used to create a domain partitioning and

then a mappable block structure to avoid the expensive

calculation of a volumetric parameterization. Shang et al.

[25] described a different way of using a frame field on a

tetrahedral mesh. In their approach, it is used not to guide a

volumetric parameterization or a domain partitioning, but to

drive the generation of mesh sheets in terms of the spatial

twist continuum. This results in a more robust and

parallelizable method that does not depend in heavy

numerical libraries. However, the final mesh is boundary

dependent since it relies on an initial surface quadrilateral

mesh. Wang et al. [26] used frame fields in order to guide

the creation of dual surfaces using an underlying hex mesh

generated by a hex-to-tet method. By isolating singularities

and boundary features, these surfaces generate block

decompositions that respect the geometry and topology of

the domain. However, many of their steps are heuristic and

not guaranteed to work in all cases.

Another successful technique for producing all-hex meshes

with block structure is that of Polycubes. In such methods, a

solid formed from a union of cubes (Polycube) is created and

represents the initial model. A hexahedral mesh can be easily

created in the Polycube and then mapped back to the model

to produces the final hexahedral mesh. High quality meshes

are produced robustly even for complex models. However

singularities merge close to the boundary reducing the

quality in the regions that are important from a simulation

perspective. The main challenge in these approaches is the

robust generation of the Polycube structure, which remains

an open problem. State of the art methods for generating

Polycubes are [27] and [28].

Finally, in [29] Lim et al. propose generating multi-block

decompositions for 2D domains based on an evolutionary

algorithm. In order to generate blocks of high quality a set of

fixed boundary points that capture all important geometric

features is created. Based on this set, a new set of candidate

points on the interior of the domain is generated. Quad

meshes are generated based on those points and evaluated in

an evolutionary fashion until the best block is derived. The

results obtained are comparable to the state-of-the-art. The

authors also discuss the extension of the method to 3D.

In this work, a method for the automatic decomposition of a

general domain is proposed which combines the merits of

the medial object and frame field approach. Continuing the

work of [30], it is explained how frames and cross-fields can

be constructed on top of the medial object in order to create

an internal line network attached to singularity lines. This

line network is then extended to guide the generation of

partition surfaces that decompose the domain.

2. PRELIMINARIES

Before the method is explained some definitions are given in

order to familiarize the reader with the concepts related to

the work.

367

Medial object

The medial object is the locus of the center of an inscribed

sphere of maximal diameter as it rolls around the interior of

an object. A sphere is maximal if there is no other inscribed

sphere that contains it. The medial object is made up of

medial surfaces, edges and vertices. In non-degenerate cases

each medial surface is constructed by centers of spheres that

touch two faces of the object, each medial edge by centers of

spheres that touch three faces of the object and each medial

vertex by centers of spheres that touch four faces of the

object. Another possible configuration is the so called finite

contact where the inscribed sphere is in contact with a finite

portion of the boundary, like when the sphere rolls along the

axis of a cylinder. One more case is that of curvature contact,

where the curvature of the inscribed sphere and the

minimum curvature of the surface are the same as, for

example, at the foci of an elliptical extrusion. The vector that

starts from a point on the medial object and ends at a position

of contact of the corresponding maximal sphere with the

boundary is called touching vector. The medial object has

some important properties which are important for mesh

generation. These are

• One to one correspondence with the domain.

• Dimensional reduction: the medial object is a 2D

object.

• It is orientation independent.

• It identifies parts of the object boundary in

geometric proximity.

 Mesh singularities

In a quad mesh, singularities are called the nodes of the mesh

on which more or less than four mesh edges are connected.

The most common situations are those where three or five

edges are incident to the node. These are referred to as

positive and negative singularities accordingly. Similarly, in

a hexahedral mesh, mesh edges where more or less than four

hexahedral elements are connected are called singular edges.

These edges connect to each other to form singularity lines.

The number and the position of singularities affect the

quality and the “flow” of the mesh. In general, a small

number of singularities is preferred. Singularity lines also

describe how the decomposition will look. In this work, two

different types of categorization of singularities are used.

The first one to describe the type of the singularity regarding

the number of mesh elements connected to it. The second

one to describe the nature of the singularity with respect to

the medial object. It is important to note that the definition

of a singularity is different from the work in [31]. Here,

boundary edges and vertices where the number of attached

elements corresponds to that implied by the dihedral angle

are not considered to be singular. For example, a concave

boundary edge of 270 degrees where three hex elements join

is not considered to be singular.

Positive singularity: Five partition surfaces emanate from

the singularity, e.g. Figure 1e. They are highlighted in blue

hereafter.

Negative singularity: Three partition surfaces emanate

from the singularity, e.g. Figure 9 left. They are highlighted

in red hereafter.

Type-1 singularity: The singularity lies on the medial

object.

Type-2 singularity: The singularity runs perpendicular to a

medial surface.

Figure 1 shows the medial object, the mesh singularities, the

partition surfaces and the singularity lines for a block with a

hole. In (b) the medial object of the solid in (a) can be seen.

In (c) a high-quality block structured mesh is generated. The

points on the top surface from which the yellow lines

emanate are mesh singularities. The yellow lines are the

wireframe of the base-complex of the domain. In (d) the

partition surfaces are given in yellow. Finally, in (e) the

singularity lines on the interior of the domain are depicted.

Partition surfaces emanate from these lines. Although in

Figure 1 partition surfaces and singularity lines are depicted

as part of an already existing hexahedral mesh with a block

structure, in this work we present a method to identify

singularities, build partition surfaces based on them, and

decompose the domain into regions that can be used to

generate a hexahedral mesh.

Partition surfaces

Partition surfaces are surfaces that emanate from

singularities. These surfaces imply a partitioning of the

domain in smaller regions and are bounded by singularities

and by boundary curves. The wireframe of this partitioning

is referred in the literature as the base complex of the

domain. This is essential to generate a high-quality

hexahedral mesh. Five partition surfaces emanate from each

positive singularity and three partition surfaces emanate

from each negative.

Frames

A frame consists of 3 mutual perpendicular unit vectors

together with their opposite vectors	{�, �, �,−�,−�,−�}.
These vectors represent the orientation in 3D space of a cube

that has its faces normal to them. In terms of a mesh, the

orientation of each mesh element can be thought to be

approximately represented by such a frame or a cube. Figure

2 shows this representation.

368

Figure 1: Object (a), medial object (b), Hex mesh (c). Yellow lines define the boundary of the base complex.
Partition surfaces (d). Singularity lines (e).

Figure 2: Cube represented by a frame (a). Mesh
element represented by a cube and the
corresponding frame (b).

3. OVERVIEW OF THE METHOD

Decomposing a general domain into blocks is a tedious task

which requires both geometrical and topological

information. Although many methods have been proposed in

the literature, they all have their strengths and weaknesses.

Inspired by previous research on medial object and frame

fields, in this work a method is proposed that uses the

directional information of a frame along with the structure

that the medial object provides in order to decompose a

domain into simple regions. Generating high-quality

partition surfaces that define those regions is crucial. To

achieve that, high-quality singularity lines and boundary

lines are identified to form the boundary of the partition

surfaces. These lines are produced after a line network is

constructed on the interior of the domain based on an

analysis that uses the medial object and directions defined

through the touching vectors. Contrary to other methods, this

work builds the boundaries of partition surfaces from the

interior of the domain and is not constrained by a boundary

cross-field. The following are the main steps of the method.

Figure 3 shows the results after each step.

1) Generate frames along medial edges and medial

vertices based on touching vectors.

2) Generate cross-fields on medial surfaces based on

those frames.

3) Identify singularity lines lying on the medial object

and being normal to it.

4) Trace streamlines that emanate from singularity

lines on the medial object to construct a complete

line network on the interior of the domain.

5) Project the line network to the boundary to generate

boundary lines.

6) Define partition surfaces with the aid of singularity

lines and boundary lines.

7) Decompose the domain based on the partition

surfaces.

The input of the method is the medial object of the domain

with a triangular mesh on each medial surface and the output

is the internal line network and a set of partition surfaces.

This work focuses mainly on the steps 1-6 aiming in the

creation of the interior line network and on the generation of

partition surfaces. Based on these surfaces, a domain

decomposition is created with the use of the commercial

software CADfix.

369

Figure 3: Steps of the method.

4. GENERATING FRAMES

Functional representation of frame:

To generate frames on the medial object, a functional

representation of frames restricted to the unit sphere is used

which exhibits their 24 symmetries. As described by [Ray et

al], this function can be decomposed onto the basis of nine

spherical harmonics namely		
 ��
,�
, �
,��, … , �
,
�.
Such a decomposition gives the opportunity to describe the

function of each frame as �
 	� where the representation

vector � has length nine and describes the influence of each

harmonic. To find the difference between two frames � and

� with different orientations, the integral � ������ −	
��

��������� is calculated on the unit sphere	��. Since the

function basis 	 is orthonomal, this integral can be further

simplified as ���� − �����. The representation vector can be

expressed by Euler angles that orient it in three-dimensional

space relative to a global reference frame. The proximity of

two frames can now be simply described by the difference

of two vectors.

Frames on medial edges and vertices:

Orienting frames on medial edges and vertices depends on

the touching vectors together with the boundary entities that

they are associated with. Both the number of the touching

entities and their type needs to be considered. Each touching

vector represents a boundary entity. If this entity is a face,

then the touching vector represents a mesh element on this

face which has a rotational degree of freedom. If the entity

is an edge or a vertex, then the touching vectors represents a

mesh element on this edge or vertex which has no degrees of

freedom. Since at each point of a medial edge/vertex, at least

three touching vectors exist, a frame must be constructed that

represents all the corresponding boundary entities. In order

to accomplish that, firstly, a frame must be constructed for

each boundary entity. Below it is explained how a frame that

fits vectors can be created.

Frames based on vectors

Let !"�	, �
 �1,…	, � be vectors in 3D space. Each pair

of vectors �!"� , !"��	, {	� $ �	� �	!"� ∙ !"� $ 0	} defines a plane

'�� with normal vector	!"(
 !"�) !"�. Vectors !"(�
 !"()
!"�� �	!"(�
 !"() !"� are sufficient to create two frames

*!"� , !"(, !"(�+ and {!"� , !"(, !"(�} both of which lies on the

plane	'��. The first frame corresponds to a representation

vectors ��� and the second one to a representation vector ���

370

based on the functional representation of frames described

before. By doing the same for each pair of non-collinear

vectors, ,� 	, �,� - − 1� frames are created for each

vector	!"�, by solving n minimization problems,

min1��� − �����
23

�45
	 , �
 1,…	, 	 	�1�

Each representation vectors represents a frame that best fit

all frames that were created based on vector	!"�. A set of

frames �
 {�5, …	, �(} is created.

By solving one more minimization problem described by the

equation

min1‖� − ��‖�
(

�47
	 	�2�

a frame that fits all frames on the set � can be identified. This

is the frame that fits all vectors	!"�.
Having defined a way to calculate a frame that best fits	
vectors, it can now be explained how frames are generated

on medial edges and vertices. For all touching vectors that

correspond to a boundary face a frame can be calculated

based on equation	�1�, where the vectors that are fitted are

the touching vectors. For each touching vector that

corresponds to boundary edge/vertex, a frame can be created

again based on equation	�1�, where the vectors that are fitted

are the normal vectors of the boundary faces that are

topological parents of the boundary edge/vertex. Having

identified a frame for each touching vector, a single frame

can be calculated by solving equation	�2�. This optimization

problem can be relaxed if only the more constrained entities

are taken into account each time. If for example a medial

edge is associated with two boundary faces and one

boundary edge the frame that corresponds to the boundary

edge can directly be used. Figure 4 shows three examples of

a cube/frame that is generated to fit three touching vectors

(indicated in red). In (a), a cube perfectly fits the vectors

since they are all normal to each other. In this special case

the planes defined by each pair of touching vectors

corresponds to the dual face of the cube. In (b), two of the

touching vectors are collinear with opposite directions while

the third one is normal to them. Only two of them are

required to generate the frame. In (c), a more general case

where the vectors are neither collinear nor normal to each

other is depicted.

Figure 4: Cube/frame generated by touching
vectors for three different configurations. When all
touching vectors are normal to each other (a),

when two of them are collinear (b), for a general
configuration (c).

Frames calculated by this procedure are not forced to be

aligned with medial edges. The only thing that constrains

them is the orientation of the planes defined by the touching

vectors.

5. GENERATING CROSS-FIELDS

In order to create a complete line network on the interior of

the domain that will be used as a skeleton to construct

partition surfaces, cross-fields are generated on medial

surfaces. Such cross-fields define orientations along medial

surfaces in the interior of the domain. Methods to generate

cross-fields are vast in the literature. In the current work,

crosses are generated by a propagation procedure described

in [32]. The generation of the cross field will depend on

boundary crosses on medial edges and vertices. Such crosses

should lie on planes that are tangent to the medial surface at

each point. Since boundary frames are generated to

approximate all touching vectors there is no guarantee that

they will lie on the medial surface. Frames are modified on

medial edges and vertices so that they are normal to the

medial surface. Let � be the representation vector of a frame

� on a medial edge or vertex. Let also 9" be the normal vector

of the medial surface. To find the frame �(with

representation vector �(that is aligned with the normal

vector 9" and is closest to the frame � in terms of the

functional representation, the function	:
 ‖�(− �‖� is

minimized. An example of such frames is shown in Figure 5

on the left. The orientation of boundary crosses depends on

the information carried by touching vectors. Such

information may include hard boundary constraints due to

edges or vertices that restrict frame orientation. While

crosses are forced to lie on medial surfaces, they are not

forced to be tangential on medial edges. This is expected to

result in a simpler block topology than that of [13] where

meshes on medial surfaces are forced to align with medial

edges. Figure 5 shows an example of a 2D cross field

generated on a medial surface. When boundary crosses are

aligned with medial edges (right), a negative singularity

emerges which, in the current method, is avoided (left).

Figure 5: Frames are rotated to be normal to the
medial surface. The cross field is not constrained
to align with medial edges (a). When it is, more
singularities are identified (b).

371

6. GENERATING LINE NETWORK

Singularities

As discussed in a previous section, singularities can be

distinguished by whether they lie on the medial object

(Type-1) or they pass through a medial surface (Type-2).

This section explains how such singularities can be

identified.

Type-1: The procedure of generating singularities that lie on

the medial object consists of two steps. In the first step,

positions on medial edges where singularities enter the

medial object are identified. In the second step, these lines

are traced along the medial surfaces, based on the directional

information of the cross-field, until they meet another

singularity, the boundary, or they connect back to

themselves.

By considering a medial edge as being part of one of its

parent medial surfaces, touching vectors can be organized in

groups of two. Each of them is associated with one boundary

entity. By calculating the rotation of adjacent frames

calculated by (1), the positions where a singularity is needed

to create a well-structured decomposition that respects only

those two boundary entities is identified. If, for example,

those two touching vectors are associated with two boundary

faces, then the singularity will enter the body through the

medial edge and run across the medial surface which lies

between those two boundary faces. Figure 6 shows how

frames that correspond to the touching vectors along two

neighboring points � and ; on a medial edge can be

compared. Here, one combination of three frames out of the

four that correspond to each touching vectors is depicted. A

similar analysis can be made for all combinations of three

touching vectors. If the best fitting frame is calculated on

many points along the medial edge based on the touching

vectors, the position of the singularity can be visualized as a

cube that suddenly “flips” (Figure 7). This “flip” occurs

when the angle of the touching vectors passes through 45 or

135 degrees. Each time, a singularity that lies on the

corresponding medial surface is sought.

Figure 6: Identifying singularities entering medial
surfaces by analyzing neighboring frames.

Having found the position where the singularity enters the

medial face, then the singularity is created by tracing along

the cross-field on the medial surface. Figure 7 shows an

example of an elongated 5 sided block with a curved side

edge. A positive singularity is traced along the medial

surface.

Type-1 singularities are associated with the boundary of the

domain through the medial object. Each end point of the

singularity can be projected to a certain boundary entity in

order to form a line that starts from the boundary and finishes

on the boundary. The only exception is that of singularities

that form loops and connect to themselves. The projection

depends on the medial edge or the medial vertex on which

the end point lies. From all the boundary entities with which

this medial edge/vertex is associated with the one whose

touching vector forms the smallest angle with the direction

of the singularity line is chosen. This guarantees that the

singularity will be connected to the boundary smoothly. On

Figure 7(left) it can be seen how the end points of a Type-1

singularity are connected to the boundary. Furthermore, a

Type-1 singularity is also associated with the boundary

entities of the medial surface, on which it lies. If the

singularity line is projected to these boundary entities,

boundary lines or points are created. These lines/points will

be used to generate partition surfaces as will be described in

the following section.

Figure 7: Example of a positive singularity traced
on a medial surface. The singularity enters where
frame orientations flips.

In a similar way, medial vertices can indicate positions

where a singularity will enter the medial object through a

medial edge. In this case touching vectors on the medial

vertex are organized in groups according to the medial edge

that is analyzed. Figure 8 shows an example of an elongated

pentagonal prism where the medial edge in the middle

carries a positive singularity line. A front view is also given

where the frames can be seen to rotate around the medial

edge.

Figure 8: Identifying singularities carried by medial
edges. Frames for each touching vector are
analyzed.

372

Type-2: Since crosses on medial surfaces are placed on

nodes of an underlying triangular mesh, singularities are

identified by analyzing rotations of crosses on each

triangular mesh element. Singular points are identified on

medial surfaces. Singularity lines are then created by

extruding these points to the boundary entities associated

with this medial surface. Since singularity lines should end

on boundary faces and not on boundary edges or vertices,

only medial surfaces that lie between two boundary faces are

considered. Figure 9 shows an example of two short prisms.

On the left, a negative singularity lies on the interior of the

triangular prism. On the right, a positive singularity lies on

the pentagonal prism.

Figure 9: Singularities normal to medial surfaces
are identified by cross fields. The simple examples
of a triangular and pentagonal prism are illustrated.

Streamlines

In 2D, five/three streamlines emanate from each

positive/negative singularity. These streamlines follow the

cross-field and form the decomposition of the domain by

connecting to other singularities or to the boundary. In 3D,

five partition surfaces emanate from each positive

singularity line and three from each negative. In this work,

instead of directly generating these surfaces, their bounding

lines are first created. These lines can then be used to

generate the surfaces. Similarly to 2D, streamlines are

emanated from each singularity. In Figure 18, these

streamlines are depicted in green. Again, Type-1 and Type-

2 singularities are treated in a different way. Streamlines are

traced on top of the medial object. On Figure 10 it is depicted

how partition surfaces on semicircular plate intersect with

the medial object of the domain defining lines that emanate

from singularities and travel across different medial entities.

Since it is the partition surfaces that are to be created it is

logical to think reversely and first try to generate the green

lines and then, based on them, define the partition surfaces.

Streamline types

Type-1: Each end of a Type-1 singularities can be treated

locally as a 2D singularity and five/three streamlines can be

initiated there, depending on whether the singularity is

positive or negative. Thus, from each Type-1 singularity

ten/six streamlines will be traced. These traces can lie on

medial faces or medial edges and are traced until they join to

a singularity or they meet a boundary edge. The cross-field

on the medial object provides the directional information to

guide these traces. The initial direction of the traces depends

on the local structure of the medial object. Figure 11 shows

the directions in one end of a positive singularity. Traces tr1

and tr4 follow the touching vectors and connect to boundary

faces BF1 and BF2 respectively. Traces tr2 and tr3 on the

other hand, run across medial faces parallel to the boundary

faces to create high-quality blocks. Finally, trace tr5 runs

across the medial edge that lies between BF1 and BF2. A

similar configuration would exist on the other end of the

singularity line. It is also depicted how tracing along the

medial object’s entities provides a more global view. Trace

tr5 from the top singularity line connects to the bottom one

after travelling along medial edges.

Figure 10: Partition surfaces (yellow) intersecting
with the medial object to define streamlines.

Figure 11: Streamlines are initiated based on the
structure of the medial object. They can lie on
medial surfaces and medial edges. The structure of
the medial object can be crucial in connecting
singularities together.

Type-2: Type-2 singularities are treated like in 2D. Thus

three/five new traces will be initiated from each

negative/positive singular point on a medial surface. The

directions of the traces depend on the cross-field, as

described in [32], and are traced until they join to another

singularity or they meet a boundary edge. In this case, all

traces start on the same medial surface. An example is given

in Figure 16 which shows streamlines from four negative

singularities.

Boundary association

In order to create the boundary lines that will support the

partition surfaces, streamlines, like singularities, must be

associated with the boundary. These associations depend on

the type of the singularity and on the connectivity of the

medial object with the boundary.

Each streamline that emanates from a Type-1 singularity will

support the generation of one partition surface. The local

nature of this partition surface (in the region of the endpoint

373

of the singularity) can be described by its normal vector	 9"

!5999") !", where !5999"
 !<=99999" is the vector that connects the end

point of the singularity, to which the streamline is connected

to, to the boundary of the domain and !" is the tangent vector

of the streamline at this endpoint. Since a streamline lies on

a medial surface or a medial edge, it can be associated with,

at least, two boundary entities. Regarding that, one partition

surface will be created based on each streamline, choosing

to which boundary entities the streamline will be associated

to, depends on maintaining a smooth partition surface. If	!<999"
is the touching vector that connects the starting point of the

streamline with a boundary entity, then, if	!<999") !" ≅ 9", this

boundary entity is associated with the streamline. This

condition will ensure that the associations will result in

smooth partition surfaces. If, on the other hand, this

condition does not hold, then the partition surface will form

a dihedral angle along the streamline. In Figure 12 the blue

positive singularity can be seen to follow the direction of y-

axis. Two of the five streamlines emanating from this

singularity are shown in green. Figure 13 shows how

streamline tr2 cannot be associated with both boundary

entities. Only when projected to the top is the singularity

parallel to the yellow surface generated. When it is projected

to the right a surface perpendicular to the singularity is

created which does not correspond to a partition surface that

emanates from the singularity. On Figure 14, on the other

hand, tr1 can be associated with both boundary entities since

both projections generate surfaces that are parallel to the

singularity.

Figure 12: Two of the five streamlines that emanate
from the blue positive singularity lie on the same
medial surface and thus can be associated to two
boundary entities. The association must be done
so that the partition surfaces will be parallel to the
singularity.

Figure 13: When tr2 is projected on the top, the
corresponding surface respects the singularity line
(left). When projected to the right the
corresponding surface does not. Only projections
that respect the singularity are kept so that the
resulting partition surfaces will emanate from
singularities.

Figure 14: When tr1 is projected on both
boundaries, the resulting surfaces are parallel to
the singularity line and thus they can both assist
on the creation of a partition surface that respect
the singularity line. Tr1 is associated with both
boundary entities.

Each streamline that emanates from a Type-2 singularity on

the other hand is associated with both boundary entities that

the medial surface, on which it lies, is associated with.

Tracing streamlines depends on the frames on medial edges

and vertices and on the cross fields on medial surfaces.

However, since the medial object consists of many different

surfaces, edges and vertices, a trace might have to travel

along many of them until it connects to another singularity

or it meets the boundary. Medial edges and vertices indicate

positions where a trace “jumps” from one medial entity to

another. The way this transition will take place is important

since these lines will form the structure to create partition

surfaces. If a transition is smooth, then that will result in

generating high-quality partition surfaces.

When a streamline passes from a medial entity to another the

association to the boundary must be identified again. From

all the boundary entities of the new medial entity, those that

maintain the smoothness of the partition surface are chosen.

A new trace is then initiated on the new medial entity. It is

also important to note that when this transition occurs, more

than one new traces might be initiated on different medial

entities. For example on a non-degenerate medial edge three

medial surfaces are connected. When a trace lying on one of

them meets the medial edge, two new traces will be initiated.

The association with the boundary must be derived for each

new trace. On Figure 15, a trace from a negative singularity

can be seen to break into two new traces when it meets a

medial edge. It can also be seen how the direction of the new

traces are such that the partition surface (light yellow) will

continue smoothly.

374

Figure 15: A streamline meeting a medial edge
breaks into two new traces.

Local control

Tracing Type-1 and Type-2 singularities and their

streamlines on the medial object gives the flexibility to

handle different regions separately. Adjustments,

corrections and simplifications of the line network can be

accomplished separately on each medial surface/edge. If, for

example, two streamlines on the same medial surface pass

close to each other Figure 16 (a), they can be connected by

manipulating only the traces on this medial surface before

they propagate to different medial surfaces. The sudden

jump on the streamlines in Figure 16 (b) appears because

streamlines where forced to join. Lines like those can then

be smoothed in order to increase the quality of the final block

decomposition. By joining such lines spiral effects can be

avoided. Increasing the cross-field density would force

streamlines to pass closer to each other and thus produce a

smaller step when joined in the cost of a more expensive

cross-field computation. Joining lines can guided by a

distance parameter that depends on the local radius of the

maximum inscribed sphere of the medial object. Here the

value of ?/3.0 was heuristically chosen. Since this radius is

a direct measure of the local thickness of the domain, it is a

good candidate to decide whether streamlines need to be

joined to simplify the final decomposition.

Figure 16: Traces from four Type-2 negative
singularities are connected to create a simple
topology on the interior. The line network can be
locally adjusted by analyzing a selected medial
surface.

Line network

After all singularity lines have been identified and all their

streamlines have been traced, a complete line network is

generated on the interior of the domain. This line network is

strongly related to the medial object and each of the lines is

associated with certain boundary entities. The network

consists of the singularity lines and all the streamlines that

emanate from them. Moreover, since the medial object is

connected to the boundary, all streamlines are guaranteed to

be connected to the boundary, or to another streamline, or to

a singularity line. In Figure 17, an example of a model with

a tip clearance is given. The tip is not flat and a cavity sits

inside the solid tip. Four positive and four negative

singularities are identified. The complete internal line

network for this geometry is depicted in Figure 18.

Streamlines are indicated with green color. All lines are

smoothed to support the generation of a high-quality

partitioning.

Figure 17: Singularity lines. View of the cavity.

Figure 18: Line network consisting of singularity
lines (red and blue) and streamlines (green).
Streamlines lie on the medial object.

7. BUILDING DECOMPOSITIONS

Boundary curves

The line network consists of streamlines that lie on the

medial object and of singularity lines. Furthermore, since

each medial entity is associated with parts of the object’s

boundary, this association is inherited to the line network as

described in section 6. Through this association, boundary

curves can be created by projecting each streamline and each

375

singularity line to the boundary. Boundary curves that

correspond to the same streamline will support the

construction of one partition surface with the assistance of

the singularity line. In Figure 19 an example is given for a

positive singularity. Green lines represent trace lines that lie

on the medial object. When projected to the boundary they

produce the yellow boundary lines. On the right, a detail is

given for the region around the concavities. The medial

object structure captures such features and, as a result, the

boundary lines take them into account too. These boundary

lines start from singularities and, either meet the other end

of the singularity or join to another singularity. Boundary

lines together with singularities create loops of lines to

define partition surfaces. In Figure 20, all boundary lines are

depicted in yellow. For good quality surfaces to be generated

it is important that singularities and boundary curves are

smooth and thus a smoothing step is important. During

smoothing the connectivity with the boundary should be

maintained.

Figure 19: The green streamlines that lie on the
medial object are extruded to form the yellow
boundary lines (a). The medial object captures all
features of the domain and so do the streamlines
and the boundary lines. An example of two
concavities is given in (b).

Figure 20: Boundary loops for the model of Figure
17.

Partition surfaces

The boundary curves and singularity lines define the

boundaries of high-quality partition surfaces. Since

boundary lines were generated using all the features of the

domain it is expected that the partition surfaces will respect

them too. Figure 21(a) shows partition surfaces on the

interior of the model of Figure 17. Figure 21(b) depicts how

the partition surface respects the two concavities. Since the

medial object captures such features of the domain, so do the

streamlines and consequently, the partition surfaces too. In

Figure 23(a) the partition surfaces can be seen separately.

Figure 21: High-quality partition surfaces are
generated (a). These surfaces respect features of
the domain (b).

Generate regions

The partition surfaces that were generated in the previous

step are used to decompose the domain. At this stage, the

generation of regions suitable for hexahedral meshing is not

fully automated. After automatically generating the line

network and the partition surfaces, regions are constructed

with the aid of the commercial software CADfix. In order to

do that, the intersections between partition surfaces are

identified. In Figure 22, an example of such intersections is

given. In (a), two partition surfaces from two positive

singularities on the left are highlighted in yellow. In (b),

partition surfaces from two positive singularities on the right

are also shown. In (c) the intersections with the yellow

partition surfaces are given in purple. In (d) a top view of the

intersection is given. These curves, together with the

boundary curves and the singularity lines, define the

boundaries of the regions that will be created and hex-

meshed. These regions have no further singularities. The

generation of two such blocks can be seen on the right of

Figure 22. After the regions have been defined, the user can

prescribe the density of the mesh through the meshing

environment of CADfix and generate a hexahedral mesh.

Figure 23(b) shows the decomposition implied by the

partition surfaces for the model of Figure 17. It is important

to note that although no singularities exist in the regions after

decomposition, however, not all of the regions have a simple

block structure. Due to concavities, some of the regions need

to be decomposed further in order to have only simple

blocks. An example of such a region is given in Figure 24(a).

Although this region is not mappable, a good quality mesh

can be created by sweeping (b).

376

Figure 22: Partition surfaces from two positive singularities (a). Partition surfaces from two other positive
singularities are highlighted in green (b). Intersections between them are shown in purple (c) and (d). In the
right, two blocks are given. These are bounded by singularity lines, intersections between partition surfaces
and boundary lines.

Figure 23: Partition surfaces (a). Decomposition
(b).

Figure 24: Region that is not a simple block (a). A
high-quality mesh generated via sweeping (b).

8. RESULTS

The proposed method has been tested in a series of models

and produced decompositions suitable for the generation of

all hexahedral meshes. The medial object and all the meshes

are created using the commercial software CADfix. Using

the provided API the method has been implemented in

Python. The first model is a simple thin semicircular plate

shown together with its medial object in Figure 25.

Figure 25: Thin semicircular plate with its medial
object

Two negative singularities are identified on the central

medial surface. The streamlines are traced until they meet

the boundary or they connect to other singularities.

Boundary lines are formed by extruding to the boundary

these lines and, together with the singularities they form the

partition surfaces. A block decomposition is generated and a

high-quality mesh is created. Figure 26 shows these steps.

Figure 27 shows the second model, a thin circular plate with

two holes, together with its medial object. In this model, six

positive and two negative singularities are identified. Figure

377

28 shows the streamlines and the crosses generated on top of

the medial object.

Figure 26: Streamlines (top left), partition surfaces
(top right), block decomposition (bottom left) and
hex-mesh (bottom right) for the thin semicircular
plate.

Figure 27: Circular plate with two holes together
with its medial object.

Figure 28: Cross-fields on the medial object and
streamlines traced. Six positive and two negative
singularities are identified.

The boundary lines that are created based on these

streamlines are depicted in Figure 29.

Figure 29: Boundary lines generated for the plate
with the two holes.

A more complex model is shown in Figure 30. The concave

features of this model make the decomposition quite

challenging for a non-expert.

Figure 30: Solid model together with its medial
object.

Two details of the medial object are given in Figure 31 to

understand how the concavities affect the medial object. In

Figure 31(a), the medial surface that maps the top to the

bottom boundary face is highlighted. The loop formed by the

four concave boundary edges results in a rectangular hole on

the medial surface. As it can be seen in Figure 31(b), the

medial object curves around the concavities. This proves to

be really helpful since it will allow streamlines to curve

around the concavities.

Figure 31: Concavities result in a hole in a medial
surface (a). A detail of the medial surfaces around
the concave boundary edges (b).

Figure 32 shows the cross-field on the medial surface of

Figure 31(a). Four positive singularities are identified and

the corresponding streamlines are shown in green. Although

378

the streamlines belong to the same medial surface, the hole

created by the concavity separates the singularities on the

left from the singularities on the right. However, the medial

object’s connectivity around the concavities, shown in

Figure 31(b), allows the streamlines to be connected on

different medial surfaces.

Figure 32: Concave edges result in a hole on the
medial surface. The streamlines on the left side are
not aware of those on the right.

In Figure 33 it can be seen how the structure of the medial

object around the concavity makes it possible for the

streamlines to connect to each other. It can also be seen how

they connect to another blue positive singularity on the top.

A detail is also given which shows how the streamline breaks

into two near the concavity. One continues and connects to

the other streamline coming from the right while the second

one turns 90 degrees following the concave boundary until

it connects to the positive singularity on the top.

Figure 33: Streamlines traced from medial surface
to medial surface on the medial object connect to
each other although the concavity separated them.
A streamline can be seen to “break” in two around
the concavity.

Streamlines like these are “geometry aware” and help in

generating a decomposition that captures all important

features of the domain. In Figure 34 the partition surface

that corresponds to the streamlines of Figure 33 is given. The

positive singularities on which it is attached are shown in

blue.

Figure 34: Partition surface attached to three
positive singularities respecting the concave
boundary edges.

The final decomposition of this model is given in Figure 35.

Most regions are simple blocks. However, around the

concavities the regions are a bit more complex (Figure

36(a)), and were created based on surfaces like the one

depicted on Figure 34. A good quality mesh can still be

created by sweeping like that shown in Figure 36(b) or

alternatively the region could be further decomposed as

shown in Figure 36(c). However, no further singularities

exist in these regions. At this stage, such regions are not

treated automatically. It is part of on-going research to

automatically detect concave features and construct extra

partition surfaces.

Figure 35: Decomposition of the model of Figure
27.

Figure 36: Non-simple block regions (a), mesh of
yellow region created by sweeping (b), further
decomposition into blocks of yellow region (c).

The mesh for the model of Figure 30 is given in Figure 37.

379

Figure 37: Mesh for the model of Figure 30. (Min. /
Avg. Scaled Jacobian: 0.68 / 0.97)

Finally streamlines for one more example are given in Figure

38 (b). Partition surfaces for this geometry where shown in

Figure 22. Four positive singularity lines are identified. The

block decomposition that was generated based on the

partition surfaces and the final hexahedral mesh are given in

Figure 39.

Figure 38: Model with two through holes in
orthogonal directions (a). The cross-field on the
medial object together with singularity lines and
streamlines (b).

Figure 39: Final block decomposition and
hexahedral mesh for the model of Figure 38. (Min. /
Avg. Scaled Jacobian: 0.69 / 0.94)

9. DISCUSSION

Generating high-quality partition surfaces to create

decompositions sufficient for all-hexahedral meshing can be

proven to be difficult. Capturing all geometrical and

topological features of the domain is challenging. In the

current work, this issue was addressed by first generating a

set of boundary curves and singularity lines which bound

those surfaces. These lines are generated by projecting on

the boundary a line network created on top of the medial

object of the domain. Since the medial object captures all

geometrical and topological features of the domain, the

partition surfaces will respect them too. Furthermore, since

the medial object by itself separates the domain into regions,

a line network with simple topology can be created by

modifying it locally on each medial surface. This simplifies

the decomposition. Instead of manipulating partition

surfaces, changes can now be done on curves on the medial

object. Furthermore, by placing singularities on the medial

object, they are pushed to the interior of the domain, far from

the boundary. This ensures that the decomposition and the

final mesh will have high quality close to the boundary. This

is, in general, preferable for numerical simulations.

Moreover, since singularity lines do not depend on an

underlying tetrahedral mesh, noisy patterns that are common

in frame-field methods are avoided and in general smooth

lines are created. By generating frames based on touching

vectors and not by aligning them with medial edges,

unnecessary singularities are avoided. In general, compared

to the current state of the art where the fixed cross-field

topology of the boundary restricts the decomposition

process, an attempt is made to construct it on cross-fields

built on the interior and the project it to the boundary.

The medial object of the domain proves to be a really helpful

framework on which singularities can be traced. At the same

time, it captures efficiently all geometric features of the

geometry and thus can provide important information in

reasoning a high-quality decomposition. However, the

medial object by itself is difficult to construct and no method

exists that can guarantee a robust and efficient computation

of the medial object of an arbitrary complex domain.

This work aims, not only on describing a method by which

arbitrary domains can be decomposed for hexahedral

meshing, but also to bring together the merits of two

different methods. This can help to gain further knowledge

regarding the long-standing problem of block-

decomposition. The medial object provides a topological

and geometrical connectivity on the interior of the domain

that could be beneficial. Having understood what exactly is

needed, then a, more easily generated, imprecise medial

object could be used to assist existing methods that rely on

frame-fields.

The method was tested on a number of models and produced

good quality partitioning of the domains. However, there are

still issues that need to be addressed. Concave features can

result in decompositions that are not simple blocks like those

shown in Figure 24 and Figure 36. Extra partition surfaces

are needed to fully decompose the domains into blocks.

Generating such surfaces by exploring the imprints of the

concavities on the medial object is a topic of future research.

380

At this stage, the lack of a robust method to generate the

exact medial object for every possible domain is the main

drawback of the method as it relies on it. Handling

concavities to generate pure block regions is another issue

that needs to be addressed. Finally, degenerate cases where

multiple points on the boundary map to a single point/line on

the medial object (like for example a sphere, a cylinder or a

blended convex edge) need to be further examined to make

the method more complete.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the financial support

provided by Innovate UK via the GEMinIDS (project

113088), a UK Centre for Aerodynamics project. The

authors acknowledge Rolls-Royce for granting permission

to publish this paper.

REFERENCES

[1] J. Thompson, Z. U. a Warsi, C. W. Mastin, and J.

F. Thomson, Numerical grid generation:

foundations and applications, vol. 1. North-

Holland, 1985.

[2] W. J. Gordon and C. A. Hall, “Construction of

curvilinear co‐ordinate systems and applications to

mesh generation,” Int. J. Numer. Methods Eng.,

vol. 7, no. 4, pp. 461–477, Jan. 1973.

[3] R. E. Smith and L. E. Eriksson, “Algebraic grid

generation,” Comput. Methods Appl. Mech. Eng.,

vol. 64, no. 1–3, pp. 285–300, Jan. 1987.

[4] S. Cannan, “Plastering - A new approach to

automated, 3-D hexahedral mesh generation,” in

33rd Structures, Structural Dynamics and

Materials Conference, 1992.

[5] T. D. Blacker and M. B. Stephenson, “Paving: A

new approach to automated quadrilateral mesh

generation,” Int. J. Numer. Methods Eng., vol. 32,

no. 4, pp. 811–847, Jun. 1991.

[6] M. L. Staten, R. A. Kerr, S. J. Owen, T. D.

Blacker, M. Stupazzini, and K. Shimada,

“Unconstrained plastering-hexahedral mesh

generation via advancing-front geometry

decomposition,” Int. J. Numer. Methods Eng., vol.

81, no. 2, pp. 135–171, Jan. 2010.

[7] P. M. Knupp, Next-Generation Sweep Tool: A

Method for Generating All-Hex Meshes on Two-

and-One-Half Dimensional Geometries. 1998.

[8] S. Cai and T. J. Tautges, “One-to-one sweeping

based on harmonic S-T mappings of facet meshes

and their cages,” Eng. Comput., vol. 31, no. 3, pp.

439–452, Jul. 2015.

[9] M. A. Scott, S. E. Benzley, and S. J. Owen,

“Improved many-to-one sweeping,” Int. J. Numer.

Methods Eng., vol. 65, no. 3, pp. 332–348, Jan.

2006.

[10] E. Ruiz-Gironés, X. Roca, and J. Sarrate, “A new

procedure to compute imprints in multi-sweeping

algorithms,” in Proceedings of the 18th

International Meshing Roundtable, 2009, Berlin,

Heidelberg: Springer Berlin Heidelberg, 2009, pp.

281–299.

[11] M. A. Price, C. G. Armstrong, and M. A. Sabin,

“Hexahedral mesh generation by medial surface

subdivision: Part I. Solids with convex edges,” Int.

J. Numer. Methods Eng., vol. 38, no. 19, pp.

3335–3359, Oct. 1995.

[12] M. A. Price and C. G. Armstrong, “Hexahedral

mesh generation by medial surface subdivision:

Part ii. solids with flat and concave edges,” Int. J.

Numer. Methods Eng., vol. 40, no. 1, pp. 111–136,

Jan. 1997.

[13] W. R. Quadros, “LayTracks3D: A new approach

for meshing general solids using medial axis

transform,” Compuer-Aided Design., vol. 72, pp.

102–117, 2016.

[14] M. Livesu, A. Muntoni, E. Puppo, and R. Scateni,

“Skeleton-driven Adaptive Hexahedral Meshing of

Tubular Shapes,” Comput. Graph. Forum, vol. 35,

no. 7, pp. 237–246, 2016.

[15] M. Nieser, U. Reitebuch, and K. Polthier,

“CUBECOVER - Parameterization of 3D

volumes,” Comput. Graph. Forum, vol. 30, no. 5,

pp. 1397–1406, Aug. 2014.

[16] J. Huang, Y. Tong, H. Wei, and H. Bao,

“Boundary aligned smooth 3D cross-frame field,”

in ACM Transactions on Graphics, 2011, vol. 30,

no. 6, p. 1.

[17] J. Huang, T. Jiang, Y. Wang, Y. Tong, and H.

Bao, “Automatic Frame Field Guided Hexahedral

Mesh Generation, Technical Report,” 2012.

[18] Y. Li, Y. Liu, W. Xu, W. Wang, and B. Guo, “All-

hex meshing using singularity-restricted field,”

ACM Transactions on Graphics, vol. 31, no. 6, p.

1, Nov. 2012.

[19] N. Ray, D. Sokolov, and B. Lévy, “Practical 3D

Frame Field Generation,” ACM Trans. Graph.,

vol. 35, no. 6, p. 233:1--233:9, Nov. 2016.

[20] J. Solomon, A. Vaxman, and D. Bommes,

“Boundary Element Octahedral Fields in

Volumes,” ACM Transactions on Graphics, vol.

36, no. 3, May 2017.

[21] H. Liu, P. Zhang, E. Chien, J. Solomon, and D.

Bommes, “Singularity-constrained Octahedral

Fields for Hexahedral Meshing,” ACM

Transactions on Graphics, vol. 37, no. 4, p. 93:1--

93:17, Jul. 2018.

[22] R. T. Fogg HJ, Sun L, Makem JE, Armstrong CG,

“Singularities in structured meshes and cross-

fields,” Computer-Aided Design, vol. 105, pp. 11–

25, 2018.

[23] F. L. Ryan Viertel, Matthew L Staten, “Analysis

of Non-Meshable Automatically Generated Frame

Fields.,” Albuquerque, NM (United States), 2016.

[24] N. Kowalski, F. Ledoux, and P. Frey,

“Smoothness driven frame field generation for

hexahedral meshing,” CAD Computer-Aided

Design., vol. 72, pp. 65–77, Mar. 2016.

[25] F. Shang, Y. Gan, and Y. Guo, “Hexahedral mesh

generation via constrained quadrilateralization,”

PLoS One, vol. 12, no. 5, p. e0177603, May 2017.

[26] R. Wang, C. Shen, J. Chen, H. Wu, and S. Gao,

381

“Sheet operation based block decomposition of

solid models for hex meshing.,” Computer-Aided

Design., vol. 85, pp. 123–137, 2017.

[27] J. Gregson, A. Sheffer, and E. Zhang, “All-hex

mesh generation via volumetric polycube

deformation,” Eurographics Symp. Geom.

Process., vol. 30, no. 5, pp. 1407–1416, Aug.

2011.

[28] X. Fang, W. Xu, H. Bao, and J. Huang, “All-hex

Meshing Using Closed-form Induced Polycube,”

ACM Transactions on Graphics, vol. 35, no. 4, p.

124:1--124:9, Jul. 2016.

[29] S. (2018). A. blocking of S. using E. A. Lim,

C.W., Yin, X., Zhang, T., Goh, C.K., Alejandro,

L.B., Moreno, & Shahpar, “Automatic blocking of

Shapes using Evolutionary Algorithm.,” in

Proceeding of the 27th International Roundtable,

2018.

[30] D. Papadimitrakis, C. G. Armstrong, T. T.

Robinson, S. Shahpar, and A. Le Moigne, “A

Combined Medial Object and Frame Approach to

Compute Mesh Singularity Lines,” in 27th

International Meshing Roundtable., 2018.

[31] J. S. and D. B. Liu, Heng, Paul Zhang, Edward

Chien, “Singularity-constrained octahedral fields

for hexahedral meshing,” ACM Transactions on

Graphics 37, p. 93:1-93:17, 2018.

[32] H. J. Fogg, C. G. Armstrong, and T. T. Robinson,

“Automatic generation of multiblock

decompositions of surfaces,” Int. J. Numer.

Methods Eng., vol. 101, no. 13, pp. 965–991, Mar.

2015.

382

