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ABSTRACT 

In this work, a novel method for creating decompositions of general 3D domains, suitable for hexahedral mesh generation is 

presented. To accomplish this, frames and cross-fields are generated on top of the medial object of the domain. The geometrical 

and topological information carried by the medial object, together with the directional information of the frames/crosses help 

analyze the domain. By generating frames and cross fields on medial vertices, edges and faces based on touching vectors, a 

directional field is constructed on top of the medial object. Based on it, critical lines in the domain called, singularity lines, are 

identified. Starting from these, a complete line network is created on the interior of the domain. This network is extruded to the 

boundary in order to create the boundary of high-quality partitioning surfaces that are used to decompose the domain into regions 

appropriate for a high-quality hexahedral mesh. Examples are given to validate the method. 
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1. RELATED WORK

Generating a structured mesh comprised of hexahedral 

elements has been a topic of research since the 1970s. 

Mapping methods were the first approach to be investigated 

for simple geometries. Either by solving partial differential 

equations [1] or by using algebraic interpolation techniques 

[2], [3], they aim to create the mesh by mapping a regular 

mesh in the parametric space to the physical space. 

Nowadays these methods are mostly used after the 

computational domain has been decomposed into mappable 

sub-regions or blocks.  

Plastering [4], is the 3D equivalent of the paving method in 

2D [5]. Starting from a boundary quad mesh it gradually 

constructs hex elements in an advancing front. While good 

element quality could be achieved close to the boundary, 

voids are created inside the volume which, often, cannot be 

meshed with hex elements. To avoid additional constraints, 

Staten et al. [6] proposed an extension which does not rely 

on a boundary mesh. By advancing fronts inwards and 

generating meshes on inner voids that define the boundary 

mesh, they created hexahedral meshes for rather simple 

geometries.  

One of the most popular hex mesh generation algorithms is 

sweeping. The basic concept of this algorithm is that a quad 

mesh on a source face is extruded to a target face along a 

specified direction [7]. This one to one sweeping algorithm 

has been further improved through the years [8] to handle 

complex shapes and even cases where there is more than one 

source and/or target faces [9], [10]. However, when dealing 

with many to many type sweeps, there remains a level of 

domain decomposition/imprinting required to generate the 

meshable regions. 
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Price et al. [11] used the 3D medial object to create a 

decomposition of a solid into sub regions that can be easily 

meshed by the midpoint subdivision technique. Using the 

topological and adjacency information the medial object 

provides, they came up with a set of 13 meshable solid 

primitives, each with at most 8 faces, with each face having 

between three and six sides. These primitives are placed 

along medial vertices, edges and surfaces to create the 

decomposition of the solid. In their second work [12] the 

authors extend their work so that geometries with medial 

surface degeneracies, shallow and concave edges can also be 

analyzed. However, problems such as N-valent vertices and 

objects with two sided faces still need to be investigated. 

LayTracks3D [13] is a more recent work which also relies 

on the 3D medial object. By combining the medial object 

and the advancing front method hex-dominant meshes are 

created. Using medial axis junction curves together with the 

medial radii, simpler regions called corridors are created. 

After meshing medial surfaces inside the corridors, a further 

subdivision is provided with the creation of the so-called 

tracks. The advancing front method is then used to form the 

final hex dominant mesh. The author also gives information 

on how this method can be extended to create all-hex meshes 

and how it can be used for the meshing of assemblies with 

the creation of imprints on the medial object. The main 

drawbacks of these technique are a) the robust computation 

of the medial surface is still challenging b) a small change in 

object geometry can radically change the topology of the 

medial surface and, therefore, the resulting mesh. Finally, 

one more algorithm that uses skeletons of models to generate 

hexahedral meshes is that described by Livesu et al. in [14]. 

In this work high quality hexahedral meshes are generated 

after a tubular structure that resembles the initial geometry 

is constructed based on a curve skeleton. However, the 

method described is limited in models that admit a skeletal 

representation.  

Nieser et al. [15] first proposed a method for generating a 

hexahedral mesh of a solid subjected to boundary alignment 

constraints by finding a volume parameterization of a 

manually created block decomposition of the domain. The 

notion of a frame field built upon a tetrahedral mesh that 

guides the parameterization was introduced and several 

conditions of the so called singularities and the gradient of 

the frame field where given. The automatic, fast and robust 

generation and correction of frame fields for general 

domains was the focus of many works to follow [16]–[20]. 

Liu et al. [21]recently proposed a method to generate frame 

fields with manually prescribed singularity graphs, thus 

giving the opportunity to manually correct topological 

invalid singularity graphs and then generate a correct frame 

field. The fundamental properties of hex meshes were first 

studied by Price et al. [11], [12]. In [21] these properties 

were used from a slightly different perspective to derive 

local and global conditions that are necessary for a hex-

meshable frame field. Fogg et al. [22] also proposed 

conditions that a network of singularities must respect. 

However, the topology of the singularities of the frame fields 

that can be automatically computed by current methods are 

still not guaranteed to imply a valid hexahedral mesh even 

for simple geometries [23].   

Having obtained a high-quality frame field, Kowalski et al. 

[24] suggested that the singularity graph of the frame field 

can be immediately used to create a domain partitioning and 

then a mappable block structure to avoid the expensive 

calculation of a volumetric parameterization. Shang et al. 

[25] described a different way of using a frame field on a 

tetrahedral mesh. In their approach, it is used not to guide a 

volumetric parameterization or a domain partitioning, but to 

drive the generation of mesh sheets in terms of the spatial 

twist continuum. This results in a more robust and 

parallelizable method that does not depend in heavy 

numerical libraries. However, the final mesh is boundary 

dependent since it relies on an initial surface quadrilateral 

mesh. Wang et al. [26] used frame fields in order to guide 

the creation of dual surfaces using an underlying hex mesh 

generated by a hex-to-tet method. By isolating singularities 

and boundary features, these surfaces generate block 

decompositions that respect the geometry and topology of 

the domain. However, many of their steps are heuristic and 

not guaranteed to work in all cases.  

Another successful technique for producing all-hex meshes 

with block structure is that of Polycubes. In such methods, a 

solid formed from a union of cubes (Polycube) is created and 

represents the initial model. A hexahedral mesh can be easily 

created in the Polycube and then mapped back to the model 

to produces the final hexahedral mesh. High quality meshes 

are produced robustly even for complex models. However 

singularities merge close to the boundary reducing the 

quality in the regions that are important from a simulation 

perspective. The main challenge in these approaches is the 

robust generation of the Polycube structure, which remains 

an open problem. State of the art methods for generating 

Polycubes are [27] and [28]. 

Finally, in [29] Lim et al. propose generating multi-block 

decompositions for 2D domains based on an evolutionary 

algorithm. In order to generate blocks of high quality a set of 

fixed boundary points that capture all important geometric 

features is created. Based on this set, a new set of candidate 

points on the interior of the domain is generated. Quad 

meshes are generated based on those points and evaluated in 

an evolutionary fashion until the best block is derived. The 

results obtained are comparable to the state-of-the-art. The 

authors also discuss the extension of the method to 3D.  

In this work, a method for the automatic decomposition of a 

general domain is proposed which combines the merits of 

the medial object and frame field approach. Continuing the 

work of [30], it is explained how frames and cross-fields can 

be constructed on top of the medial object in order to create 

an internal line network attached to singularity lines. This 

line network is then extended to guide the generation of 

partition surfaces that decompose the domain.  

2. PRELIMINARIES

Before the method is explained some definitions are given in 

order to familiarize the reader with the concepts related to 

the work. 
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Medial object 

The medial object is the locus of the center of an inscribed 

sphere of maximal diameter as it rolls around the interior of 

an object. A sphere is maximal if there is no other inscribed 

sphere that contains it. The medial object is made up of 

medial surfaces, edges and vertices. In non-degenerate cases 

each medial surface is constructed by centers of spheres that 

touch two faces of the object, each medial edge by centers of 

spheres that touch three faces of the object and each medial 

vertex by centers of spheres that touch four faces of the 

object. Another possible configuration is the so called finite 

contact where the inscribed sphere is in contact with a finite 

portion of the boundary, like when the sphere rolls along the 

axis of a cylinder. One more case is that of curvature contact, 

where the curvature of the inscribed sphere and the 

minimum curvature of the surface are the same as, for 

example, at the foci of an elliptical extrusion. The vector that 

starts from a point on the medial object and ends at a position 

of contact of the corresponding maximal sphere with the 

boundary is called touching vector. The medial object has 

some important properties which are important for mesh 

generation. These are 

• One to one correspondence with the domain.

• Dimensional reduction: the medial object is a 2D

object.

• It is orientation independent.

• It identifies parts of the object boundary in

geometric proximity.

 Mesh singularities 

In a quad mesh, singularities are called the nodes of the mesh 

on which more or less than four mesh edges are connected. 

The most common situations are those where three or five 

edges are incident to the node. These are referred to as 

positive and negative singularities accordingly. Similarly, in 

a hexahedral mesh, mesh edges where more or less than four 

hexahedral elements are connected are called singular edges. 

These edges connect to each other to form singularity lines. 

The number and the position of singularities affect the 

quality and the “flow” of the mesh. In general, a small 

number of singularities is preferred. Singularity lines also 

describe how the decomposition will look. In this work, two 

different types of categorization of singularities are used. 

The first one to describe the type of the singularity regarding 

the number of mesh elements connected to it. The second 

one to describe the nature of the singularity with respect to 

the medial object. It is important to note that the definition 

of a singularity is different from the work in [31]. Here, 

boundary edges and vertices where the number of attached 

elements corresponds to that implied by the dihedral angle 

are not considered to be singular. For example, a concave 

boundary edge of 270 degrees where three hex elements join 

is not considered to be singular. 

Positive singularity: Five partition surfaces emanate from 

the singularity, e.g. Figure 1e. They are highlighted in blue 

hereafter. 

Negative singularity: Three partition surfaces emanate 

from the singularity, e.g. Figure 9 left. They are highlighted 

in red hereafter. 

Type-1 singularity: The singularity lies on the medial 

object. 

Type-2 singularity: The singularity runs perpendicular to a 

medial surface. 

Figure 1 shows the medial object, the mesh singularities, the 

partition surfaces and the singularity lines for a block with a 

hole. In (b) the medial object of the solid in (a) can be seen. 

In (c) a high-quality block structured mesh is generated. The 

points on the top surface from which the yellow lines 

emanate are mesh singularities. The yellow lines are the 

wireframe of the base-complex of the domain. In (d) the 

partition surfaces are given in yellow. Finally, in (e) the 

singularity lines on the interior of the domain are depicted. 

Partition surfaces emanate from these lines. Although in 

Figure 1 partition surfaces and singularity lines are depicted 

as part of an already existing hexahedral mesh with a block 

structure, in this work we present a method to identify 

singularities, build partition surfaces based on them, and 

decompose the domain into regions that can be used to 

generate a hexahedral mesh. 

Partition surfaces 

Partition surfaces are surfaces that emanate from 

singularities. These surfaces imply a partitioning of the 

domain in smaller regions and are bounded by singularities 

and by boundary curves. The wireframe of this partitioning 

is referred in the literature as the base complex of the 

domain. This is essential to generate a high-quality 

hexahedral mesh. Five partition surfaces emanate from each 

positive singularity and three partition surfaces emanate 

from each negative. 

Frames 

A frame consists of 3 mutual perpendicular unit vectors 

together with their opposite vectors	{�, �, �,−�,−�,−�}.
These vectors represent the orientation in 3D space of a cube 

that has its faces normal to them. In terms of a mesh, the 

orientation of each mesh element can be thought to be 

approximately represented by such a frame or a cube. Figure 

2 shows this representation.
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Figure 1: Object (a), medial object (b), Hex mesh (c). Yellow lines define the boundary of the base complex. 
Partition surfaces (d). Singularity lines (e). 

Figure 2: Cube represented by a frame (a). Mesh 
element represented by a cube and the 
corresponding frame (b). 

3. OVERVIEW OF THE METHOD

Decomposing a general domain into blocks is a tedious task 

which requires both geometrical and topological 

information. Although many methods have been proposed in 

the literature, they all have their strengths and weaknesses. 

Inspired by previous research on medial object and frame 

fields, in this work a method is proposed that uses the 

directional information of a frame along with the structure 

that the medial object provides in order to decompose a 

domain into simple regions. Generating high-quality 

partition surfaces that define those regions is crucial. To 

achieve that, high-quality singularity lines and boundary 

lines are identified to form the boundary of the partition 

surfaces. These lines are produced after a line network is 

constructed on the interior of the domain based on an 

analysis that uses the medial object and directions defined 

through the touching vectors. Contrary to other methods, this 

work builds the boundaries of partition surfaces from the 

interior of the domain and is not constrained by a boundary 

cross-field. The following are the main steps of the method. 

Figure 3 shows the results after each step. 

1) Generate frames along medial edges and medial

vertices based on touching vectors.

2) Generate cross-fields on medial surfaces based on

those frames.

3) Identify singularity lines lying on the medial object

and being normal to it.

4) Trace streamlines that emanate from singularity

lines on the medial object to construct a complete

line network on the interior of the domain.

5) Project the line network to the boundary to generate

boundary lines.

6) Define partition surfaces with the aid of singularity

lines and boundary lines.

7) Decompose the domain based on the partition

surfaces.

The input of the method is the medial object of the domain 

with a triangular mesh on each medial surface and the output 

is the internal line network and a set of partition surfaces. 

This work focuses mainly on the steps 1-6 aiming in the 

creation of the interior line network and on the generation of 

partition surfaces. Based on these surfaces, a domain 

decomposition is created with the use of the commercial 

software CADfix. 
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Figure 3: Steps of the method.

4. GENERATING FRAMES

Functional representation of frame: 

To generate frames on the medial object, a functional 

representation of frames restricted to the unit sphere is used 

which exhibits their 24 symmetries. As described by [Ray et 

al], this function can be decomposed onto the basis of nine 

spherical harmonics namely		 
 ��
,�
, �
,��, … , �
,
�.
Such a decomposition gives the opportunity to describe the 

function of each frame as � 
 	� where the representation

vector � has length nine and describes the influence of each 

harmonic.  To find the difference between two frames � and 

� with different orientations, the integral � ������ −	
��

��������� is calculated on the unit sphere	��. Since the

function basis 	 is orthonomal, this integral can be further 

simplified as ���� − �����. The representation vector can be

expressed by Euler angles that orient it in three-dimensional 

space relative to a global reference frame. The proximity of 

two frames can now be simply described by the difference 

of two vectors. 

Frames on medial edges and vertices: 

Orienting frames on medial edges and vertices depends on 

the touching vectors together with the boundary entities that 

they are associated with. Both the number of the touching 

entities and their type needs to be considered. Each touching 

vector represents a boundary entity. If this entity is a face, 

then the touching vector represents a mesh element on this 

face which has a rotational degree of freedom. If the entity 

is an edge or a vertex, then the touching vectors represents a 

mesh element on this edge or vertex which has no degrees of 

freedom. Since at each point of a medial edge/vertex, at least 

three touching vectors exist, a frame must be constructed that 

represents all the corresponding boundary entities. In order 

to accomplish that, firstly, a frame must be constructed for 

each boundary entity. Below it is explained how a frame that 

fits   vectors can be created.  

Frames based on vectors 

Let !"�	, � 
 �1,…	,  � be    vectors in 3D space. Each pair

of vectors �!"� , !"��	, {	� $ �	� �	!"� ∙ !"� $ 0	} defines a plane

'�� with normal vector	!"( 
 !"� ) !"�. Vectors !"(� 
 !"( )
!"�� �	!"(� 
 !"( ) !"� are sufficient to create two frames

*!"� , !"(, !"(�+ and {!"� , !"(, !"(�} both of which lies on the

plane	'��. The first frame corresponds to a representation

vectors ��� and the second one to a representation vector ���
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based on the functional representation of frames described 

before. By doing the same for each pair of non-collinear 

vectors, ,� 	, �,� -  − 1� frames are created for each

vector	!"�, by solving n minimization problems,

min1��� − �����
23

�45
	 , � 
 1,…	,  	 	�1�

Each representation vectors represents a frame that best fit 

all frames that were created based on vector	!"�. A set of

frames � 
 {�5, …	, �(} is created.

By solving one more minimization problem described by the 

equation 

min1‖� − ��‖�
(

�47
	 	�2�

a frame that fits all frames on the set � can be identified. This 

is the frame that fits all vectors	!"�.
Having defined a way to calculate a frame that best fits	 
vectors, it can now be explained how frames are generated 

on medial edges and vertices. For all touching vectors that 

correspond to a boundary face a frame can be calculated 

based on equation	�1�, where the vectors that are fitted are

the touching vectors. For each touching vector that 

corresponds to boundary edge/vertex, a frame can be created 

again based on equation	�1�, where the vectors that are fitted

are the normal vectors of the boundary faces that are 

topological parents of the boundary edge/vertex. Having 

identified a frame for each touching vector, a single frame 

can be calculated by solving equation	�2�. This optimization

problem can be relaxed if only the more constrained entities 

are taken into account each time. If for example a medial 

edge is associated with two boundary faces and one 

boundary edge the frame that corresponds to the boundary 

edge can directly be used. Figure 4 shows three examples of 

a cube/frame that is generated to fit three touching vectors 

(indicated in red). In (a), a cube perfectly fits the vectors 

since they are all normal to each other. In this special case 

the planes defined by each pair of touching vectors 

corresponds to the dual face of the cube. In (b), two of the 

touching vectors are collinear with opposite directions while 

the third one is normal to them. Only two of them are 

required to generate the frame. In (c), a more general case 

where the vectors are neither collinear nor normal to each 

other is depicted. 

Figure 4: Cube/frame generated by touching 
vectors for three different configurations. When all 
touching vectors are normal to each other (a), 

when two of them are collinear (b), for a general 
configuration (c).  

Frames calculated by this procedure are not forced to be 

aligned with medial edges. The only thing that constrains 

them is the orientation of the planes defined by the touching 

vectors.  

5. GENERATING CROSS-FIELDS

In order to create a complete line network on the interior of 

the domain that will be used as a skeleton to construct 

partition surfaces, cross-fields are generated on medial 

surfaces. Such cross-fields define orientations along medial 

surfaces in the interior of the domain. Methods to generate 

cross-fields are vast in the literature. In the current work, 

crosses are generated by a propagation procedure described 

in [32]. The generation of the cross field will depend on 

boundary crosses on medial edges and vertices. Such crosses 

should lie on planes that are tangent to the medial surface at 

each point. Since boundary frames are generated to 

approximate all touching vectors there is no guarantee that 

they will lie on the medial surface. Frames are modified on 

medial edges and vertices so that they are normal to the 

medial surface. Let � be the representation vector of a frame 

� on a medial edge or vertex. Let also  9" be the normal vector

of the medial surface. To find the frame �( with

representation vector �( that is aligned with the normal

vector  9" and is closest to the frame � in terms of the

functional representation, the function	: 
 ‖�( − �‖� is

minimized. An example of such frames is shown in Figure 5 

on the left. The orientation of boundary crosses depends on 

the information carried by touching vectors. Such 

information may include hard boundary constraints due to 

edges or vertices that restrict frame orientation. While 

crosses are forced to lie on medial surfaces, they are not 

forced to be tangential on medial edges. This is expected to 

result in a simpler block topology than that of [13] where 

meshes on medial surfaces are forced to align with medial 

edges. Figure 5 shows an example of a 2D cross field 

generated on a medial surface. When boundary crosses are 

aligned with medial edges (right), a negative singularity 

emerges which, in the current method, is avoided (left). 

Figure 5: Frames are rotated to be normal to the 
medial surface. The cross field is not constrained 
to align with medial edges (a). When it is, more 
singularities are identified (b). 
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6. GENERATING LINE NETWORK

Singularities 

As discussed in a previous section, singularities can be 

distinguished by whether they lie on the medial object 

(Type-1) or they pass through a medial surface (Type-2). 

This section explains how such singularities can be 

identified.  

Type-1: The procedure of generating singularities that lie on 

the medial object consists of two steps. In the first step, 

positions on medial edges where singularities enter the 

medial object are identified. In the second step, these lines 

are traced along the medial surfaces, based on the directional 

information of the cross-field, until they meet another 

singularity, the boundary, or they connect back to 

themselves.  

By considering a medial edge as being part of one of its 

parent medial surfaces, touching vectors can be organized in 

groups of two. Each of them is associated with one boundary 

entity. By calculating the rotation of adjacent frames 

calculated by (1), the positions where a singularity is needed 

to create a well-structured decomposition that respects only 

those two boundary entities is identified. If, for example, 

those two touching vectors are associated with two boundary 

faces, then the singularity will enter the body through the 

medial edge and run across the medial surface which lies 

between those two boundary faces. Figure 6 shows how 

frames that correspond to the touching vectors along two 

neighboring points � and ; on a medial edge can be 

compared. Here, one combination of three frames out of the 

four that correspond to each touching vectors is depicted. A 

similar analysis can be made for all combinations of three 

touching vectors. If the best fitting frame is calculated on 

many points along the medial edge based on the touching 

vectors, the position of the singularity can be visualized as a 

cube that suddenly “flips” (Figure 7). This “flip” occurs 

when the angle of the touching vectors passes through 45 or 

135 degrees. Each time, a singularity that lies on the 

corresponding medial surface is sought. 

Figure 6: Identifying singularities entering medial 
surfaces by analyzing neighboring frames.  

Having found the position where the singularity enters the 

medial face, then the singularity is created by tracing along 

the cross-field on the medial surface. Figure 7 shows an 

example of an elongated 5 sided block with a curved side 

edge. A positive singularity is traced along the medial 

surface.  

Type-1 singularities are associated with the boundary of the 

domain through the medial object. Each end point of the 

singularity can be projected to a certain boundary entity in 

order to form a line that starts from the boundary and finishes 

on the boundary. The only exception is that of singularities 

that form loops and connect to themselves. The projection 

depends on the medial edge or the medial vertex on which 

the end point lies. From all the boundary entities with which 

this medial edge/vertex is associated with the one whose 

touching vector forms the smallest angle with the direction 

of the singularity line is chosen. This guarantees that the 

singularity will be connected to the boundary smoothly. On 

Figure 7(left) it can be seen how the end points of a Type-1 

singularity are connected to the boundary. Furthermore, a 

Type-1 singularity is also associated with the boundary 

entities of the medial surface, on which it lies. If the 

singularity line is projected to these boundary entities, 

boundary lines or points are created. These lines/points will 

be used to generate partition surfaces as will be described in 

the following section. 

Figure 7: Example of a positive singularity traced 
on a medial surface. The singularity enters where 
frame orientations flips.  

In a similar way, medial vertices can indicate positions 

where a singularity will enter the medial object through a 

medial edge. In this case touching vectors on the medial 

vertex are organized in groups according to the medial edge 

that is analyzed. Figure 8 shows an example of an elongated 

pentagonal prism where the medial edge in the middle 

carries a positive singularity line. A front view is also given 

where the frames can be seen to rotate around the medial 

edge. 

Figure 8: Identifying singularities carried by medial 
edges. Frames for each touching vector are 
analyzed.  
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Type-2: Since crosses on medial surfaces are placed on 

nodes of an underlying triangular mesh, singularities are 

identified by analyzing rotations of crosses on each 

triangular mesh element. Singular points are identified on 

medial surfaces. Singularity lines are then created by 

extruding these points to the boundary entities associated 

with this medial surface. Since singularity lines should end 

on boundary faces and not on boundary edges or vertices, 

only medial surfaces that lie between two boundary faces are 

considered. Figure 9 shows an example of two short prisms. 

On the left, a negative singularity lies on the interior of the 

triangular prism. On the right, a positive singularity lies on 

the pentagonal prism. 

Figure 9: Singularities normal to medial surfaces 
are identified by cross fields. The simple examples 
of a triangular and pentagonal prism are illustrated. 

Streamlines 

In 2D, five/three streamlines emanate from each 

positive/negative singularity. These streamlines follow the 

cross-field and form the decomposition of the domain by 

connecting to other singularities or to the boundary. In 3D, 

five partition surfaces emanate from each positive 

singularity line and three from each negative. In this work, 

instead of directly generating these surfaces, their bounding 

lines are first created. These lines can then be used to 

generate the surfaces. Similarly to 2D, streamlines are 

emanated from each singularity. In Figure 18, these 

streamlines are depicted in green. Again, Type-1 and Type-

2 singularities are treated in a different way. Streamlines are 

traced on top of the medial object. On Figure 10 it is depicted 

how partition surfaces on semicircular plate intersect with 

the medial object of the domain defining lines that emanate 

from singularities and travel across different medial entities. 

Since it is the partition surfaces that are to be created it is 

logical to think reversely and first try to generate the green 

lines and then, based on them, define the partition surfaces.  

Streamline types 

Type-1: Each end of a Type-1 singularities can be treated 

locally as a 2D singularity and five/three streamlines can be 

initiated there, depending on whether the singularity is 

positive or negative. Thus, from each Type-1 singularity 

ten/six streamlines will be traced. These traces can lie on 

medial faces or medial edges and are traced until they join to 

a singularity or they meet a boundary edge. The cross-field 

on the medial object provides the directional information to 

guide these traces.  The initial direction of the traces depends 

on the local structure of the medial object. Figure 11 shows 

the directions in one end of a positive singularity. Traces tr1 

and tr4 follow the touching vectors and connect to boundary 

faces BF1 and BF2 respectively. Traces tr2 and tr3 on the 

other hand, run across medial faces parallel to the boundary 

faces to create high-quality blocks. Finally, trace tr5 runs 

across the medial edge that lies between BF1 and BF2. A 

similar configuration would exist on the other end of the 

singularity line. It is also depicted how tracing along the 

medial object’s entities provides a more global view. Trace 

tr5 from the top singularity line connects to the bottom one 

after travelling along medial edges.  

Figure 10: Partition surfaces (yellow) intersecting 
with the medial object to define streamlines. 

Figure 11: Streamlines are initiated based on the 
structure of the medial object. They can lie on 
medial surfaces and medial edges. The structure of 
the medial object can be crucial in connecting 
singularities together.  

Type-2:  Type-2 singularities are treated like in 2D. Thus 

three/five new traces will be initiated from each 

negative/positive singular point on a medial surface. The 

directions of the traces depend on the cross-field, as 

described in [32], and are traced until they join to another 

singularity or they meet a boundary edge. In this case, all 

traces start on the same medial surface. An example is given 

in Figure 16 which shows streamlines from four negative 

singularities. 

Boundary association 

In order to create the boundary lines that will support the 

partition surfaces, streamlines, like singularities, must be 

associated with the boundary. These associations depend on 

the type of the singularity and on the connectivity of the 

medial object with the boundary.  

Each streamline that emanates from a Type-1 singularity will 

support the generation of one partition surface. The local 

nature of this partition surface (in the region of the endpoint 
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of the singularity) can be described by its normal vector	 9" 

!5999" ) !", where !5999" 
 !<=99999" is the vector that connects the end

point of the singularity, to which the streamline is connected 

to, to the boundary of the domain and !" is the tangent vector

of the streamline at this endpoint. Since a streamline lies on 

a medial surface or a medial edge, it can be associated with, 

at least, two boundary entities. Regarding that, one partition 

surface will be created based on each streamline, choosing 

to which boundary entities the streamline will be associated 

to, depends on maintaining a smooth partition surface. If	!<999"
is the touching vector that connects the starting point of the 

streamline with a boundary entity, then, if	!<999" ) !" ≅  9", this

boundary entity is associated with the streamline. This 

condition will ensure that the associations will result in 

smooth partition surfaces. If, on the other hand, this 

condition does not hold, then the partition surface will form 

a dihedral angle along the streamline. In Figure 12 the blue 

positive singularity can be seen to follow the direction of y-

axis. Two of the five streamlines emanating from this 

singularity are shown in green. Figure 13 shows how 

streamline tr2 cannot be associated with both boundary 

entities. Only when projected to the top is the singularity 

parallel to the yellow surface generated. When it is projected 

to the right a surface perpendicular to the singularity is 

created which does not correspond to a partition surface that 

emanates from the singularity. On Figure 14, on the other 

hand, tr1 can be associated with both boundary entities since 

both projections generate surfaces that are parallel to the 

singularity. 

Figure 12: Two of the five streamlines that emanate 
from the blue positive singularity lie on the same 
medial surface and thus can be associated to two 
boundary entities. The association must be done 
so that the partition surfaces will be parallel to the 
singularity.  

Figure 13: When tr2 is projected on the top, the 
corresponding surface respects the singularity line 
(left). When projected to the right the 
corresponding surface does not. Only projections 
that respect the singularity are kept so that the 
resulting partition surfaces will emanate from 
singularities.  

Figure 14: When tr1 is projected on both 
boundaries, the resulting surfaces are parallel to 
the singularity line and thus they can both assist 
on the creation of a partition surface that respect 
the singularity line. Tr1 is associated with both 
boundary entities. 

Each streamline that emanates from a Type-2 singularity on 

the other hand is associated with both boundary entities that 

the medial surface, on which it lies, is associated with. 

Tracing streamlines depends on the frames on medial edges 

and vertices and on the cross fields on medial surfaces. 

However, since the medial object consists of many different 

surfaces, edges and vertices, a trace might have to travel 

along many of them until it connects to another singularity 

or it meets the boundary. Medial edges and vertices indicate 

positions where a trace “jumps” from one medial entity to 

another. The way this transition will take place is important 

since these lines will form the structure to create partition 

surfaces. If a transition is smooth, then that will result in 

generating high-quality partition surfaces.  

When a streamline passes from a medial entity to another the 

association to the boundary must be identified again. From 

all the boundary entities of the new medial entity, those that 

maintain the smoothness of the partition surface are chosen. 

A new trace is then initiated on the new medial entity. It is 

also important to note that when this transition occurs, more 

than one new traces might be initiated on different medial 

entities. For example on a non-degenerate medial edge three 

medial surfaces are connected. When a trace lying on one of 

them meets the medial edge, two new traces will be initiated. 

The association with the boundary must be derived for each 

new trace. On Figure 15, a trace from a negative singularity 

can be seen to break into two new traces when it meets a 

medial edge. It can also be seen how the direction of the new 

traces are such that the partition surface (light yellow) will 

continue smoothly. 
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Figure 15: A streamline meeting a medial edge 
breaks into two new traces.  

Local control 

Tracing Type-1 and Type-2 singularities and their 

streamlines on the medial object gives the flexibility to 

handle different regions separately. Adjustments, 

corrections and simplifications of the line network can be 

accomplished separately on each medial surface/edge. If, for 

example, two streamlines on the same medial surface pass 

close to each other Figure 16 (a), they can be connected by 

manipulating only the traces on this medial surface before 

they propagate to different medial surfaces. The sudden 

jump on the streamlines in Figure 16 (b) appears because 

streamlines where forced to join. Lines like those can then 

be smoothed in order to increase the quality of the final block 

decomposition. By joining such lines spiral effects can be 

avoided. Increasing the cross-field density would force 

streamlines to pass closer to each other and thus produce a 

smaller step when joined in the cost of a more expensive 

cross-field computation. Joining lines can guided by a 

distance parameter that depends on the local radius of the 

maximum inscribed sphere of the medial object. Here the 

value of ?/3.0 was heuristically chosen. Since this radius is

a direct measure of the local thickness of the domain, it is a 

good candidate to decide whether streamlines need to be 

joined to simplify the final decomposition. 

Figure 16: Traces from four Type-2 negative 
singularities are connected to create a simple 
topology on the interior. The line network can be 
locally adjusted by analyzing a selected medial 
surface.  

Line network 

After all singularity lines have been identified and all their 

streamlines have been traced, a complete line network is 

generated on the interior of the domain. This line network is 

strongly related to the medial object and each of the lines is 

associated with certain boundary entities. The network 

consists of the singularity lines and all the streamlines that 

emanate from them. Moreover, since the medial object is 

connected to the boundary, all streamlines are guaranteed to 

be connected to the boundary, or to another streamline, or to 

a singularity line. In Figure 17, an example of a model with 

a tip clearance is given. The tip is not flat and a cavity sits 

inside the solid tip. Four positive and four negative 

singularities are identified. The complete internal line 

network for this geometry is depicted in Figure 18. 

Streamlines are indicated with green color. All lines are 

smoothed to support the generation of a high-quality 

partitioning.  

Figure 17: Singularity lines. View of the cavity. 

Figure 18: Line network consisting of singularity 
lines (red and blue) and streamlines (green). 
Streamlines lie on the medial object. 

7. BUILDING DECOMPOSITIONS

Boundary curves 

The line network consists of streamlines that lie on the 

medial object and of singularity lines. Furthermore, since 

each medial entity is associated with parts of the object’s 

boundary, this association is inherited to the line network as 

described in section 6. Through this association, boundary 

curves can be created by projecting each streamline and each 
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singularity line to the boundary. Boundary curves that 

correspond to the same streamline will support the 

construction of one partition surface with the assistance of 

the singularity line. In Figure 19 an example is given for a 

positive singularity. Green lines represent trace lines that lie 

on the medial object. When projected to the boundary they 

produce the yellow boundary lines. On the right, a detail is 

given for the region around the concavities. The medial 

object structure captures such features and, as a result, the 

boundary lines take them into account too. These boundary 

lines start from singularities and, either meet the other end 

of the singularity or join to another singularity. Boundary 

lines together with singularities create loops of lines to 

define partition surfaces. In Figure 20, all boundary lines are 

depicted in yellow. For good quality surfaces to be generated 

it is important that singularities and boundary curves are 

smooth and thus a smoothing step is important. During 

smoothing the connectivity with the boundary should be 

maintained.  

Figure 19: The green streamlines that lie on the 
medial object are extruded to form the yellow 
boundary lines (a). The medial object captures all 
features of the domain and so do the streamlines 
and the boundary lines. An example of two 
concavities is given in (b).  

Figure 20: Boundary loops for the model of Figure 
17.  

Partition surfaces 

The boundary curves and singularity lines define the 

boundaries of high-quality partition surfaces. Since 

boundary lines were generated using all the features of the 

domain it is expected that the partition surfaces will respect 

them too. Figure 21(a) shows partition surfaces on the 

interior of the model of Figure 17. Figure 21(b) depicts how 

the partition surface respects the two concavities. Since the 

medial object captures such features of the domain, so do the 

streamlines and consequently, the partition surfaces too. In 

Figure 23(a) the partition surfaces can be seen separately.  

Figure 21: High-quality partition surfaces are 
generated (a). These surfaces respect features of 
the domain (b).  

Generate regions 

The partition surfaces that were generated in the previous 

step are used to decompose the domain. At this stage, the 

generation of regions suitable for hexahedral meshing is not 

fully automated. After automatically generating the line 

network and the partition surfaces, regions are constructed 

with the aid of the commercial software CADfix. In order to 

do that, the intersections between partition surfaces are 

identified. In Figure 22, an example of such intersections is 

given. In (a), two partition surfaces from two positive 

singularities on the left are highlighted in yellow. In (b), 

partition surfaces from two positive singularities on the right 

are also shown. In (c) the intersections with the yellow 

partition surfaces are given in purple. In (d) a top view of the 

intersection is given. These curves, together with the 

boundary curves and the singularity lines, define the 

boundaries of the regions that will be created and hex-

meshed. These regions have no further singularities. The 

generation of two such blocks can be seen on the right of 

Figure 22. After the regions have been defined, the user can 

prescribe the density of the mesh through the meshing 

environment of CADfix and generate a hexahedral mesh. 

Figure 23(b) shows the decomposition implied by the 

partition surfaces for the model of Figure 17. It is important 

to note that although no singularities exist in the regions after 

decomposition, however, not all of the regions have a simple 

block structure. Due to concavities, some of the regions need 

to be decomposed further in order to have only simple 

blocks. An example of such a region is given in Figure 24(a). 

Although this region is not mappable, a good quality mesh 

can be created by sweeping (b). 
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Figure 22: Partition surfaces from two positive singularities (a). Partition surfaces from two other positive 
singularities are highlighted in green (b). Intersections between them are shown in purple (c) and (d). In the 
right, two blocks are given. These are bounded by singularity lines, intersections between partition surfaces 
and boundary lines.

Figure 23: Partition surfaces (a). Decomposition 
(b).

Figure 24: Region that is not a simple block (a). A 
high-quality mesh generated via sweeping (b).  

8. RESULTS

The proposed method has been tested in a series of models 

and produced decompositions suitable for the generation of 

all hexahedral meshes. The medial object and all the meshes 

are created using the commercial software CADfix. Using 

the provided API the method has been implemented in 

Python. The first model is a simple thin semicircular plate 

shown together with its medial object in Figure 25. 

Figure 25: Thin semicircular plate with its medial 
object 

Two negative singularities are identified on the central 

medial surface. The streamlines are traced until they meet 

the boundary or they connect to other singularities. 

Boundary lines are formed by extruding to the boundary 

these lines and, together with the singularities they form the 

partition surfaces. A block decomposition is generated and a 

high-quality mesh is created. Figure 26 shows these steps. 

Figure 27 shows the second model, a thin circular plate with 

two holes, together with its medial object. In this model, six 

positive and two negative singularities are identified. Figure 

377



28 shows the streamlines and the crosses generated on top of 

the medial object. 

Figure 26: Streamlines (top left), partition surfaces 
(top right), block decomposition (bottom left) and 
hex-mesh (bottom right) for the thin semicircular 
plate. 

Figure 27: Circular plate with two holes together 
with its medial object.  

Figure 28: Cross-fields on the medial object and 
streamlines traced. Six positive and two negative 
singularities are identified.  

The boundary lines that are created based on these 

streamlines are depicted in Figure 29. 

Figure 29: Boundary lines generated for the plate 
with the two holes.  

A more complex model is shown in Figure 30. The concave 

features of this model make the decomposition quite 

challenging for a non-expert.  

Figure 30: Solid model together with its medial 
object.  

Two details of the medial object are given in Figure 31 to 

understand how the concavities affect the medial object. In 

Figure 31(a), the medial surface that maps the top to the 

bottom boundary face is highlighted. The loop formed by the 

four concave boundary edges results in a rectangular hole on 

the medial surface. As it can be seen in Figure 31(b), the 

medial object curves around the concavities. This proves to 

be really helpful since it will allow streamlines to curve 

around the concavities. 

Figure 31: Concavities result in a hole in a medial 
surface (a). A detail of the medial surfaces around 
the concave boundary edges (b).  

Figure 32 shows the cross-field on the medial surface of 

Figure 31(a). Four positive singularities are identified and 

the corresponding streamlines are shown in green. Although 
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the streamlines belong to the same medial surface, the hole 

created by the concavity separates the singularities on the 

left from the singularities on the right. However, the medial 

object’s connectivity around the concavities, shown in 

Figure 31(b), allows the streamlines to be connected on 

different medial surfaces. 

Figure 32: Concave edges result in a hole on the 
medial surface. The streamlines on the left side are 
not aware of those on the right.  

In Figure 33 it can be seen how the structure of the medial 

object around the concavity makes it possible for the 

streamlines to connect to each other. It can also be seen how 

they connect to another blue positive singularity on the top. 

A detail is also given which shows how the streamline breaks 

into two near the concavity. One continues and connects to 

the other streamline coming from the right while the second 

one turns 90 degrees following the concave boundary until 

it connects to the positive singularity on the top.  

Figure 33: Streamlines traced from medial surface 
to medial surface on the medial object connect to 
each other although the concavity separated them. 
A streamline can be seen to “break” in two around 
the concavity.  

Streamlines like these are “geometry aware” and help in 

generating a decomposition that captures all important 

features of the domain.  In Figure 34 the partition surface 

that corresponds to the streamlines of Figure 33 is given. The 

positive singularities on which it is attached are shown in 

blue. 

Figure 34: Partition surface attached to three 
positive singularities respecting the concave 
boundary edges.  

The final decomposition of this model is given in Figure 35. 

Most regions are simple blocks. However, around the 

concavities the regions are a bit more complex (Figure 

36(a)), and were created based on surfaces like the one 

depicted on Figure 34. A good quality mesh can still be 

created by sweeping like that shown in Figure 36(b) or 

alternatively the region could be further decomposed as 

shown in Figure 36(c). However, no further singularities 

exist in these regions. At this stage, such regions are not 

treated automatically. It is part of on-going research to 

automatically detect concave features and construct extra 

partition surfaces. 

Figure 35: Decomposition of the model of Figure 
27.  

Figure 36: Non-simple block regions (a), mesh of 
yellow region created by sweeping (b), further 
decomposition into blocks of yellow region (c).  

The mesh for the model of Figure 30 is given in Figure 37. 
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Figure 37: Mesh for the model of Figure 30. (Min. / 
Avg. Scaled Jacobian: 0.68 / 0.97) 

Finally streamlines for one more example are given in Figure 

38 (b). Partition surfaces for this geometry where shown in 

Figure 22. Four positive singularity lines are identified. The 

block decomposition that was generated based on the 

partition surfaces and the final hexahedral mesh are given in 

Figure 39. 

Figure 38: Model with two through holes in 
orthogonal directions (a). The cross-field on the 
medial object together with singularity lines and 
streamlines (b). 

Figure 39: Final block decomposition and 
hexahedral mesh for the model of Figure 38. (Min. / 
Avg. Scaled Jacobian: 0.69 / 0.94)  

9. DISCUSSION

Generating high-quality partition surfaces to create 

decompositions sufficient for all-hexahedral meshing can be 

proven to be difficult. Capturing all geometrical and 

topological features of the domain is challenging. In the 

current work, this issue was addressed by first generating a 

set of boundary curves and singularity lines which bound 

those surfaces. These lines are generated by projecting on 

the boundary a line network created on top of the medial 

object of the domain. Since the medial object captures all 

geometrical and topological features of the domain, the 

partition surfaces will respect them too. Furthermore, since 

the medial object by itself separates the domain into regions, 

a line network with simple topology can be created by 

modifying it locally on each medial surface. This simplifies 

the decomposition. Instead of manipulating partition 

surfaces, changes can now be done on curves on the medial 

object. Furthermore, by placing singularities on the medial 

object, they are pushed to the interior of the domain, far from 

the boundary. This ensures that the decomposition and the 

final mesh will have high quality close to the boundary. This 

is, in general, preferable for numerical simulations. 

Moreover, since singularity lines do not depend on an 

underlying tetrahedral mesh, noisy patterns that are common 

in frame-field methods are avoided and in general smooth 

lines are created. By generating frames based on touching 

vectors and not by aligning them with medial edges, 

unnecessary singularities are avoided. In general, compared 

to the current state of the art where the fixed cross-field 

topology of the boundary restricts the decomposition 

process, an attempt is made to construct it on cross-fields 

built on the interior and the project it to the boundary.  

The medial object of the domain proves to be a really helpful 

framework on which singularities can be traced. At the same 

time, it captures efficiently all geometric features of the 

geometry and thus can provide important information in 

reasoning a high-quality decomposition. However, the 

medial object by itself is difficult to construct and no method 

exists that can guarantee a robust and efficient computation 

of the medial object of an arbitrary complex domain. 

This work aims, not only on describing a method by which 

arbitrary domains can be decomposed for hexahedral 

meshing, but also to bring together the merits of two 

different methods. This can help to gain further knowledge 

regarding the long-standing problem of block-

decomposition. The medial object provides a topological 

and geometrical connectivity on the interior of the domain 

that could be beneficial. Having understood what exactly is 

needed, then a, more easily generated, imprecise medial 

object could be used to assist existing methods that rely on 

frame-fields. 

The method was tested on a number of models and produced 

good quality partitioning of the domains. However, there are 

still issues that need to be addressed. Concave features can 

result in decompositions that are not simple blocks like those 

shown in Figure 24 and Figure 36. Extra partition surfaces 

are needed to fully decompose the domains into blocks. 

Generating such surfaces by exploring the imprints of the 

concavities on the medial object is a topic of future research. 
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At this stage, the lack of a robust method to generate the 

exact medial object for every possible domain is the main 

drawback of the method as it relies on it. Handling 

concavities to generate pure block regions is another issue 

that needs to be addressed. Finally, degenerate cases where 

multiple points on the boundary map to a single point/line on 

the medial object (like for example a sphere, a cylinder or a 

blended convex edge) need to be further examined to make 

the method more complete.  
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