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ABSTRACT 

A framework is presented for the automatic 2D abstraction, decomposition and block-structured hexahedral meshing of a volume 

defined by a closed triangular mesh. No proofs, necessary or sufficient conditions are provided. Instead, constructive definitions 

and instructions describe a procedure for automatically building a 2D abstraction and an all-hexahedral mesh. First, a constrained 

Delaunay tetrahedralization of the interior of the object is built and its tetras are partitioned into groups based on their internal edge 

and face counts. Through labeling, organized structures are observed where 64-tetras (6 internal edges and 4 internal faces) bookend 

stacks of 54-tetras (5 internal edges and 4 internal faces). Stacks of 54-tetras, connected four-to-each 64-tetra, form a network of 

primary prism that populate the entire object near and along its edges. The exposed edges of the primary prism form rails that 

partition the input mesh into two categories of patches. Source and target patch pairs that define extrudable sub-volumes, and edge 

patches that define secondary prism. Degeneracies are remedied through affine transformations and an efficient local mesh 

manipulation process. The mid-mesh of the extrusion pairs is then computed and extended in order to obtain a 2D manifold that is 

a far simpler, albeit incomplete, 2D abstraction of the object than a customary mid-surface/medial axis representation. The result 

is a partition of the volume into extrudable, prismatic and tetrahedral blocks that trivially leads to a single block-structured 

hexahedral mesh.  
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1. INTRODUCTION

Block-structured hexahedral meshes are of interest for both 

their geometrical and computational qualities. If available, a 

block-structured hexahedral mesh is often the preferred choice 

for non-linear plasticity and CFD analysis due to its ability, 

among other things, to ensure near-90º element corner angles 

while maintaining excellent orientation with respect to 

boundaries. Furthermore, in thin parts, commonplace in 

aerostructures, electronics and generative design, the density 

of hexahedral meshes are, in general, less affected by element 

aspect ratio than in the case of tetrahedral meshes.  As a result, 

block-structured hex meshes of such parts may feature up to 

two orders of magnitude fewer elements than equivalent 

tetrahedral meshes, thus resulting in substantial computational 

gains.   

2. PREVIOUS WORK

Attention to the special role played by 3-triangles (Delaunay 

triangles featuring 3 internal edges) and 64-tetras (Delaunay 

tetras featuring 6 internal edge and 4 internal faces) in 

identifying special morphologies in closed 2D and 3D regions 

was first reported in the context of approximating medial axes 

and mid-surfaces using meshes [1] [2] [3]. But while only in 

2D may one approximate the “inside” mid-object of a closed 

loop as the locus of the circumcenters of its 3- and 2-triangles, 

in 3D,  the circumcenters of 64- and 54-tetras may not be used 

as an approximation of the mid-surface [4]. In his 

LayTracks3D approach to meshing general solid, [5] identifies 

entire prismatic blocks along the sharp edges of objects and 

calls them tracks and rails. He then goes on to create an all-

hexahedral mesh. We will use a similar concept in this work. 
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3. NOMENCLATURE AND CONSTRUCTION 

We present a method for automatically building a 2D 

abstraction of an object that is simpler than a mid-

surface/medial axis, with the final goal of generating a block-

structured hexahedral mesh. Our approach is based on the 

observation that a constrained Delaunay tetrahedralization of 

a closed and finely meshed triangular surface mesh, without 

the addition of any internal nodes, yields only a handful of a 

certain type of tetras that we call 64-tetras (meaning, 6 internal 

edges and 4 internal faces). We speculate that the number and 

placement of the 64-tetras is robust, invariant and characterizes 

the morphology of an object. Without providing any proof nor 

any necessary or sufficient conditions, we suggest that the 

exposed edges of the 54-tetras (5 internal edges and 4 internal 

faces) partition the triangular surface of the mesh into patch 

pairs delineating extrudable volumes. We then use the patch 

pairs and their bordering primary prisms to compute a 2D 

abstraction of the object that leads us to a final hexahedral 

block-structured mesh. 

3.1. Definition of 64- and 54-tetras 

Figure 1 shows a finely triangulated surface mesh representing 

a test object that we will use throughout this presentation. This 

object is obtained by boring two partially offset and partially 

intersecting cylinders through a brick. 

 

Figure 1: Surface mesh of test object 

A fine triangulation of the test object followed by Delaunay 

tetrahedralization produces 236,242 tetras, only 15 of which 

have 6 internal edges and 4 internal faces and thus qualify as 

64-tetras. For the sake of definition, in the context of a 

tetrahedral mesh, an internal face is defined as one that is 

shared by 2 tetras, and an internal edge is defined as one that 

borders only internal faces. We call such tetrahedra 64-tetras. 

64-tetras play an important role in the present method. Figure 

2 represents all the 64-tetras generated in our test. We 

speculate, without proof, that for a “fine enough” initial 

triangular mesh, the number and general placement of 64-

tetras remain unaffected by the level of refinement. 

 

Figure 2: 64-tetras 

A practical way of differentiating tetras is by labeling them 

with a decimal number where the tens represent the number of 

internal edges and the units represent the number of internal 

faces of that tetra. In this fashion, a 64 tetra will be labelled as 

64 for its 6 internal edges and 4 internal faces. Let’s now 

consider 54-tetras. In Figure 3 they appear organized as 

prismatic structures (stacks of tetrahedra) throughout the 

mesh. 54-tetras have 4 internal faces but only 5 internal edges, 

thus leaving one exposed edge on the surface. 54-tetras appear 

as stacks of tetras bookended by 64-tetras. In Figure 3, 64-

tetras are rendered as solids while 54-tetras are rendered as 

gray wire meshes. 

 

Figure 3: 64- and 54-tetras 

3.2. Primary prisms 

By sorting 54-tetras into individual stacks starting and ending 

at 64-tetras, in the present example, 38 individual sets are 

found, organized as jagged sets of connected tetras linking the 

triangular faces of pairs of opposite 64-tetras. We refer to these 

sets as primary prisms because they represent a volume 

homeomorphic to a prism. In Figure 4 different colors are 

assigned to each primary prism to help distinguish them from 

one another. Note that 64-tetras are not visible in this solid 

rendering as all 4 faces of 64-tetras are covered by primary 

prisms. 
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Figure 4: Colored primary prisms composed of 
connected 54-tetras linking opposite 64-tetras (not 

visible) 

3.3. Regular, loop and degenerate primary 
prisms 

Primary prisms are made of 54-tetras. In general, primary 

prisms originate and end at the face of a 64-tetra but there are 

exceptions: loop primary prisms and degenerate primary 

prisms. 

1. Loop primary prisms which occur around holes are 

composed solely of 54-tetras. Figure 5 shows a 

closeup view of two loop primary prisms that occur 

in the Landing Gear example depicted in Figure 39. 

2. Degenerate primary prisms originate at a 64-tetras 

but terminate at 34-tetras and are generally located 

near the corners of the object. Figure 6 shows a 

degenerate primary prism in the present example. 

 

 

Figure 5: Two loop primary prisms produced in the 
Landing Gear example. Features of the model 

appear in gray 

 

 

Figure 6: A degenerate primary prism (left) and its 
closeup view (right). 

By definition, a 54-tetra possesses one exposed edge on the 

surface of the mesh.  The exposed edges of the 54-tetras in a 

primary prism form 3 jagged curves on the surface mesh. We 

call these curves rails. Figure 7 shows one such prism and its 

3 rails, as well as the pair of 64-tetras that bookend it. 

 

 

 

Figure 7: A single primary prism bookended by two 
64-tetras (top) and its 3 rails highlighted in light 

blue (bottom) 

3.4. Partition of the surface into extrusion 
and edge patches 

Rails are connected sets of exposed 54-tetra edges. Again, 

without proof, we suggest that rails for closed loops on the 

surface mesh and as such partition the surface mesh into a 

number surface patches. In the present example, 40 patches are 

created as shown in Figure 8. 

 

117



 

Figure 8: Surface patches resulting from the 
partition of the surface faces by rails 

Surface patches may be further classified into two categories: 

extrusion patches and edge patches. Extrusion patches are 

formed when loops of primary prisms carve out two opposing 

patches from the surface mesh. Two such loops are shown in 

Figure 9: Two primary prism loops (top) and their associated 

extrusion patch pairs are shown in the bottom image.  

 

 

Figure 9: Two primary prism loops (top) and their 
associated extrusion patch pairs (bottom) 

Extrusion patches always appear in pairs. Figure 10 shows the 

7 pairs of extrusion patches produced in the present example. 

For the sake of clarity, patch pairs are colored identically.  

 

 

 

Figure 10: Extrusion patches 

Extrusion patch pairs, along with the lateral walls of the 

primary prisms surrounding them carve out swaths of 

extrudable volumes from the object. Figure 11 shows the two 

earlier patch pairs and their associated sidewalls extracted 

from the primary prism loops that surround them. 

 

Figure 11: Two extrusion pairs and the sidewalls 
surrounding them 

The remaining non-extrusion patches are called edge patches. 

Figure 12 shows the edge patches in the current example. 

Masked extrusion patches appear as holes. 
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Figure 12: Edge patches 

3.5. Edge patches and secondary prisms 

Secondary prisms are a new type of prism enclosed by edge 

patches and the internal walls of one or more primary prisms. 

Remembering that an edge patch is one that is not an extrusion 

patch, the two edge patches (out of a total of 26) shown in 

Figure 13. The boundaries of these edge patches are composed 

of primary prism rails. 

 

Figure 13: Two edge patches 

Consider all primary prism that shares two rails with these two 

edge patches. These prisms are shown in Figure 14 where, for 

the sake of clarity, the edge patches are not shown . 

 

 

Figure 14: Primary prisms that share 2 rails with the 
two edge patches 

Finally, consider the sidewalls of these primary prisms that 

face the edge patches which, along with the edge patches, 

form two closed volumes. these volumes are called secondary 

prisms and are shown in Figure 15 from a different angle for 

the sake of clarity. Like primary prisms, secondary prisms 

define precise volumes (blocks) within the object but unlike 

primary prisms, secondary prisms are not made of 54-tetras. 

Instead (without further development) they are mostly made 

of 33- and 44-tetras. 

 

Figure 15: Edge patches and the primary prism 
sidewalls that define secondary prisms 

3.6. Calculation of the mid-mesh of 
extrusion patch pairs 

Without any proof, we assert that extrusion patch pairs are 

connected through 33- and 44-tetras only. 33-tetras have one 

exposed face and 3 internal edges. 44-tetras have no exposed 

faces but 2 exposed edges, in general opposed to one another 

in the tetra and belonging to opposite patches. There is no easy 

way to represent the 33- and 44-tetras that join each patch pair. 

Figure 16 shows the leftmost extrusion patch pair depicted 

earlier in Figure 10, with a section cut through the 33- and 44-

tetras that connect the patch pair. It can be noted that 33- (in 

blue) and 44-tetras (in yellow) form, by far, the majority of the 

tetras in a Delaunay mesh with no internal nodes obtained from 

a “fine enough” surface mesh. 
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Figure 16: Cut through 33-and 44-tetras 

The 33- and 44-tetras that connect the 2 patches can be easily 

identified as the set of 33- and 44-tetras that have either a 

surface face and its corresponding opposed node or, opposed 

edges, on each patch of the pair. Consequently, we can 

accurately construct the mid-mesh of such extrusion patch 

pairs. The process is described later in detail. Figure 17 

represents a 2D abstraction of the example model composed of 

the 7 smoothed and “extended” (details below) mid-meshes of 

the 7 extrusion patch pairs depicted earlier in Figure 10. 

 

Figure 17: Smoothed 2D abstraction (extended mid-
meshes) of extrusion pairs 

Smoothed 2D abstractions may now be re-meshed as quad 

meshes using any quad meshing meshed such as advancing 

front or paving (Figure 18).  

 

Figure 18: Quad-meshed mid-meshes 

4. HEX MESHING 

Without proof, we suggest that the volume of the object, and 

more specifically the tetras composing the Delaunay mesh, are 

partitioned into 4 sets: 

1. 64-tetras 

2. Primary prisms, composed of 54- and a few 34 tetras 

3. Extrudable sub-volumes, composed of 33- and 44-

tetras 

4. Secondary prisms, composed 33- and 44-tetras 

almost exclusively 

These sets are all primitives and as such can be treated as 

blocks and meshed and combined as a compatible all-

hexahedral mesh. 

4.1. Hex meshing of extrusions 

The vertices of quad-meshed 2D abstractions may be extruded 

along the internal edges of the 33- and 44-tetras that connect 

each patch pair. It can be noted that wherever two extruded 

mesh blocks come into contact, their grids are compatible by 

construction (detailed later) because their abstracted patches 

are adjacent. Figure 19 shows the hex meshes resulting from 

all 7 extrusions and subdivided in 2 along the extrusion. 
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Figure 19: Extruded mid-mesh quads 

4.2. Hex Meshing of primary prism blocks 
and blocks defined by 64-tetras (64-blocks) 

The blocks defined by primary prisms,  referred to hereafter as 

primary prism blocks are meshed as hexes by first subdividing 

them longitudinally, then azimuthally, by splitting their 

triangular cross-section into 3 quads. The boundary nodes of 

the quad meshed abstractions dictate the slicing locations of 

the primary prism blocks in their longitudinal direction thus 

ensuring that the extruded mesh and the hex-meshed prism 

blocks share compatible nodes. 64-tetras and degenerate 

primary prism blocks, which are also homeomorphic to tetras, 

are tetrahedral blocks and are split each into 4 hexas each 

(Figure 20). 

 

Figure 20: Hex-meshed extrusion, primary prisms 
and 64-blocks 

4.3. Hex meshing of secondary prism 
blocks 

Secondary prisms are defined by edge patches and the 

sidewalls of primary prisms. Therefore, the blocks they 

represented can be subdivided following the longitudinal 

subdivision of the primary prism blocks whose sidewall they 

share. Figure 21 shows the completed mesh composed of the 

extrusions, split in 2 in the direction of the extrusion, matching 

the primary and secondary prisms split into hexas and the 64-

tetras also split into 4 hexas. 

 

Figure 21: Final lock-structured hexahedral mesh 

5. DETAILS 

The details of the construction of the 2D abstraction which 

ensures the compatibility of the extruded meshes, the data 

structure needed to maintain a link between the tetra and hexa 

meshes and other fine points are addressed in this section. 

5.1. Construction of a 2D abstraction that 
ensures the compatibility of the extruded 
hex meshes 

Extrusion source and target patch pairs connect 33- and 44-

tetras. For each pair, the mid-mesh can be constructed by 

assembling the individual 2D elements obtained when a 33-

tetra is split with a plane across its 3 internal edges (producing 

a triangle) and a 44-tetra is split across its 4 internal edges 

(producing a quadrilateral). For the sake of example, assuming 

that the source patch is at the bottom and the target patch on 

top, Figure 22 illustrates how 33- and 44-tetras contribute to 

the mid-mesh. The contribution of a 33-tetra whose exposed 

face belongs to the target patch (blue triangle shown in A), the 

contribution of a 33-tetra whose exposed face belongs to the 

source patch (blue triangle shown in B), and the contribution 

of a 44-tetra with one exposed edge on the source and another 

on the target patch (blue quadrilateral shown in C) are shown. 
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Figure 22: Contributions of 33-and 44-tetras to the 
mid-mesh. Surface edges are highlighted in thick 

gold color. 

By assembling the individual triangles and quads (in turn, split 

into triangles along their shortest diagonal) the mid-mesh of 

any patch pair is built. A closeup of the mid-mesh can be seen 

in Figure 23 as the fine jagged light pink mesh where, for the 

sake of visibility, one of the primary prisms bounding the 

extrusion is shown as a wire mesh and a 64-tetra ending it is 

rendered in solid. It can be noted that the boundary of the mid-

surface stops short of reaching the center of the prism and stops 

at the mid-points of the edges of the 54-tetras that form the 

primary prism. 

 

Figure 23: Closeup view of the partially constructed 
mid-mesh 

At this stage, the set of mid-meshes would resemble what is 

depicted in Figure 24, i.e. a collection of isolated and 

unconnected surface meshes. Smoothing and quad-meshing 

these separate mid-meshes would result in a series of 

independent quad mesh patches which, once extruded, would 

result in a set of hex meshes that would not have any common 

nodes, unlike what was shown earlier in Figure 19, 

incompatible. Earlier, in Figure 17, a set of smoothed 2D 

abstractions were shown that did feature quad mesh 

compatibility (Figure 18) and compatibility of the resulting 

hex meshes 

 

Figure 24: Incomplete mid-meshes 

To ensure compatibility of the hex meshes resulting from 

extrusion, we introduce what we call a 2D abstraction by 

expanding each individual mid-mesh and augmenting them, 

peripherally, all the way to the center of the primary prisms 

and 64-tetras that surround them. By adding additional 

triangles, patches will meet at the center of primary prisms and 

64-tetras. The added triangles are visible in Figure 25 where, 

for the sake of improved visibility, the corner 64-tetra is 

rendered transparent and one of the surrounding primary 

prisms is rendered as a wire mesh. The added triangles, visible 

as elongated light pink triangles, are constructed between the 

boundary vertices of the mid-patches and additional vertices 

placed at the center of faces (of 54-tetras) inside the primary 

prisms. In addition, two large triangles are also visible 

(resulting from two mid-face vertices and the center vertex of 

the 64-tetra) which complete the expansion of the mid-meshes 

into a 2D abstraction. After smoothing, the 2D abstraction, 

shown earlier in Figure 17, is ready for quad-meshing. 

 

Figure 25: Completed unsmoothed extended mid-
mesh (2D abstraction) 

5.2. Data structure and sequence of 
operations 

An internal data structure guarantees a two-way connection 

between the nodes of the initial Delaunay tetra mesh and the 

nodes of the final hex mesh as the Delaunay mesh is 

partitioned and the hex mesh is created through the following 

stages: 

1. Initial closed triangular mesh 
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2. Constrained Delaunay tetrahedral mesh 

3. Primary prisms and their rails 

4. Secondary prisms 

5. Patch pairs resulting from the partitioning of the 

surface mesh by the rails 

6. Mid-patches computed from the patch pairs and 

extended to the centerline of prisms to form 2D 

abstractions 

7. Smoothing and quadrilateral meshing of 2D 

abstractions and their extrusion into hexahedral 

mesh blocks 

8. Meshing by slicing of primary prism blocks along 

marks dictated by the quad mesh boundary nodes 

9. Meshing by slicing of secondary prism blocks along 

slices dictated by the slices of the primary prism 

blocks 

10. Meshing of 64-tetras 

5.3. Meshing of primary prism blocks 

Each node of the quad-meshed 2D abstraction points to a node 

of the triangular 2D abstraction from which it stems. This is 

enforced by the quad meshing software component utilized in 

this work, namely, MeshGems-SurfOpt, developed by 

DISTENE [6]. In turn, each node of the triangular 2D 

abstraction is, by construction, the mid-point of a 33- or 44-

tetra internal edge which connects one node of the source to 

one node of the target patch. Therefore, along the boundary of 

the quad mesh, each node also sits at the center of an internal 

face of a 54-tetra belonging to a primary prism bordering the 

extrusion. 

Every boundary node of the quad mesh, shown in Figure 26, 

is represented by a black dot. By construction, each border 

node is at the center of an internal face of the primary prism 

that borders it. Therefore, each border node defines a slice of 

the primary prism block.  

 

Figure 26: Quad border vertices define slices in 
bordering prism blocks 

Primary prism blocks may now be sliced accordingly to create 

prism elements compatible with the extruded hexahedral 

blocks. In Figure 19, the extruded hex meshes have been split 

in 2 along the direction of the extrusion and the primary prism 

block slices have been split into 3 hexas each, and 64-tetra 

blocks and degenerate primary prisms blocks have been split 

into 4 hexas each. 

5.4. Meshing of secondary prism blocks 

Secondary prisms are bound by edge patches and flanked by 

primary prims. As with primary prism blocks, they can be split 

into prism elements and subsequently split into 3 hexas along 

the same slices as the primary prisms. Degenerate secondary 

prism blocks are treated as 64-tetras and meshed into 4 hexas 

accordingly. 

5.5. Ducts and cables for handling non-
manifold 2D abstractions 

Sometimes, multiple primary prisms may be bunched together 

where multiple extrusions converge from different directions. 

Figure 27 shows such an example where two prisms, shown in 

light blue and gold, share a wall and act as one. In such cases, 

the data structure is further extended to include two new 

categories. Ducts, which are composed of multiple primary 

prisms sharing 2 rails, and cables which are a set of rails 

sharing all their edges. 

      

Figure 27: Bunching of two prisms into a duct. Solid 
model (left) and highlighted duct composed of 2 

prisms colored light blue and gold 

In the presence of a duct, during the process of building 2D 

abstractions, the mid-meshes are extended all the way to the 

centerline of ducts instead of the centerline of individual 

prisms. This ensure node compatibility among all the 

extrusions converging at the duct. 

5.6. Saddle Points and 144-tetras 

At geometry saddle-points, a different type of 44-tetras may 

be created where the exposed segments of the tetra are 

adjacent instead of being opposed, as encountered earlier. We 

call these 144-tetras. These define a new category of primary 

prism that start at 64-tetras and terminate at 144-tetras. We 

refer to these primary prism as knife primary prism. 
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5.7. Computation of geodesics on the Mesh 

In many instances, including the meshing of secondary prism 

blocks it may be necessary to compute distances and geodesics 

along the edges at the surface of the initial surface mesh.  To 

this end Dijkstra’s algorithm is used as implemented by [7]. 

5.8. Smoothing prior to quad meshing 

By construction, a 2D abstraction is generally very noisy as 

seen in Figure 25. Therefore, smoothing is necessary prior to 

quad-meshing of the 2D abstraction in order to improve signal-

to-noise ratio and avoid the creation of tiny quads. A shrink-

proof smoothing of the 2D abstraction and its boundary is used 

[8]. After smoothing, MeshGems-Surfopt [6], which 

incorporates its own mesh smoothing, is applied to obtain a 

quad mesh suitable for extrusion. 

6. DEGENERACIES 

Several types of degeneracies occur in this procedure. They are 

addressed by a series of local mesh manipulations, including 

edge collapse, edge split, edge flips [9], fast data structure 

updates and topology recalculation. The iterative resolution of 

these degeneracies uses a considerable portion of the 

computational work before the network of 64-tetra and 

primary prisms is finalized and 2D abstraction can proceed. 

These degeneracies are: 

1. Symmetry degeneracies. These are Delaunay 

degeneracies which occur when a Delaunay mesh is 

created from an input triangular mesh that features local 

symmetries 

2. Degeneracies resulting in 1- and 12-tetra proliferation. 

These degeneracies are related to symmetry 

degeneracies and occurs in bulky parts along convex 

curved surfaces. 

 

3. Overlapping and folding rails which may also result in 

captive isolated faces between rails. 

 

4. Convex curvature degeneracies which are also related to 

symmetry degeneracies. 

 

5. Occurrence of convex sharp edges adjacent to more than 

one tetra or adjacent to a tetra other than a 12-tetra. 

6. Formation of very small prisms made up of only a handful 

of 54-tetras or prisms with one or two zero-length rails. 

7. Formation of entire captive patches. These occur when 

either te source or target patch in an extrusion pair is 

absent. 

8. Occurrence of fused segments between otherwise distinct 

rails. 

6.1. Symmetry degeneracies 

The most common type of degeneracy is, referred to hereafter 

symmetry degeneracy, is one in which the surface mesh of an 

object featuring local symmetries is tetrahedralized using 

Delaunay. Due to the occurrence of multiple equidistant 

options for the formation of a Delaunay tetra, neighboring 

tetras may form in a seemingly chaotic fashion. For instance, 

the 4 vertical connector columns in the electronic component 

shown in Figure 28 degenerate into fragmented and chaotically 

oriented primary prisms. 

 

  

Figure 28: Circuit board (top) and detail (bottom) 
where Delaunay degeneracy occurs 

Without special treatment, degeneracy leads to fragmented 

primary prisms in the vertical connectors (shown as stacks of 

small multicolor primary prisms in the columns, in Figure 29, 

top). An ad-hoc symmetry-breaking affine transformation Ф 

is applied to all the vertices of the surface mesh prior to 

Delaunay meshing. After the hex mesh is built, the reverse 

transform, Ф-1, is applied to the vertices of the hex mesh in 

order to recover the true geometry. Here, we use a simple 

transform that stretches the model by a factor 1.1 in the x-, 

1.2 in the y- and 1.3 in the z-direction.  The degeneracy is 

removed and single primary prisms are ensured in the vertical 

columns of the model as shown in Figure 29, bottom. 

 

 
 

 

Figure 29: Fragmentation of prisms without affine 
transform (top). After removal of degeneracy 

through transform (bottom) 
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The Delaunay degeneracy may occur in any object. Therefore, 

the affine transformation is systematically applied as part of 

the general algorithm as shown in the pseudocode further 

below.  

6.2. Degeneracies resulting in 1- and 12-
tetra proliferation 

The proliferation of 1- and 12-tetras are resolved by the 

systematic removal of such tetras. Figure 30, top, shows a cut 

constant-velocity boot (automotive, CV boot) which features 

large extents of slightly convex curved surfaces. Delaunay 

tetrahedralization results in flat 12-tetras, appearing in red, 

which, if not removed, would result in the creation of ghost 

primary prisms and the subsequent failure of the procedure. 

 

 

Figure 30: A cut CV-boot (top) results in spurious flat 
1- and 12-tetras (in red, bottom) which are removed. 
Non-flat 12-tetras remain along edges 

6.3. Overlapping and folding rail 
degeneracies 

The coarser the input triangular mesh, the more likely it is 

that rails may overlap, especially in the vicinity of their 

starting nodes which are 64-tetra corner nodes. Figure 31 

shows two such overlapping rails found in the CV boot 

example shown earlier.  The 3 overlapping edges of the rails, 

shown with the 4 node marks, are collapsed in order to 

remove this degeneracy. 

 

 
  

 

Figure 31: Overlapping rails shown in red and 
yellow in the top figure. The bottom figure shows 
how the rails must separate at the circle mark 
instead of the square. 

6.4. “Peel rails or discard captive faces” 
degeneracies 

Figure 32 shows how two neighboring primary prisms may 

share nodes (tagged as white circles) resulting in overlapping 

rails and/or the creation of captive faces. If a captive face 

(shown as a transparent yellow triangle) is removed through 

edge collapse, two separate and valid extrusions are created on 

the left and right side of the overlapping nodes. But if the 

overlapping rails are eliminated through a combination of edge 

split and edge collapse one single extrusion is created that 

surrounds the two loop primary prisms surrounding the 2 holes 

of the model.  The latter is the solution that is automatically 

retained based on aspect ratio considerations, and can be seen 

in the Examples section. 

 

Figure 32: Rail peel and captive face degeneracy 
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6.5. Convex curvature degeneracies 

Figure 33 shows a type of degeneracy caused by noisy 

convex and featureless surfaces. They also result in a 

proliferation and concentration of 1- and 12-tetras in the 

curved areas. Their systematic removal would leave behind 

an intractable primary prism structure that would result in the 

failure of the procedure. 

 

  

 

Figure 33: Convex curvature degeneracy 

7. AUTOMATION 

The following pseudocode (algorithm) is performed on a 

closed triangulated surface mesh.  

1. Read Input surface mesh 

2. Process surface mesh 

2.1. Improve mesh sizing 

2.2. Identify feature angles 

3. Affine transform Ф of the input surface 

4. Build 2D Abstraction of input as a quad mesh 

4.1. Build Delaunay tetrahedral mesh 

4.2. Iterative removal of other  (than symmetry) 

degeneracies 

4.2.1. Discard Isolated 01- and 12-tetras that have 

“flat” dihedral angles 

4.2.2. Ensure 12-tetras at convex features (flip) 

4.2.3. Identify and label tetras as 64, 54, 33, 44, etc. 

4.2.4. Identify primary prisms and their rails 

4.2.5. Correct Folding rails (collapse) 

4.2.6. Discard captive faces between rails (collapse) 

4.2.7. Discard “tiny” prisms (collapse) 

4.2.8. Move 64-tetra corners to closest concave 

node (collapse) 

4.2.9. Partition surface mesh into patches 

4.2.10. Identify extrusion patch pairs 

4.2.11. Remove captive patches when one of the 2 

extrusion patches is missing (collapse) 

4.2.12. Peel rails apart (edge splitting) 

4.2.13. Identify ducts 

4.2.14. Ensure that all prisms in a duct have the same 

number of 54-tetras (collapse) 

4.3. Build mid-meshes of extrusion patch pair 

4.4. Extend mid-meshes and obtain 2D abstraction 

4.5. Smooth and quad mesh 2D abstraction 

5. Build mixed hexa, prism and tetra mesh 

5.1. Build extrusion blocks (hex elements) 

5.2. Build 64-blocks (single tetra element) 

5.3. Build degenerate primary prism blocks (single tetra 

element) 

5.4. Build non-degenerate primary prism blocks (stacks 

of prism elements) 

5.5. Build degenerate secondary prism blocks (single 

tetra element) 

5.6. Build non-degenerate secondary prism blocks 

(stacks of prism elements) 

6. Split mixed mesh to get all-hex mesh 

6.1. Split tetras into 4 hexas 

6.2. Split prisms into 3 hexas 

6.3. Split extrusion hexas into 2 along the extrusion 

7. Inverse transform Ф-1 of hex mesh 

 

8. EXAMPLES 

The following figures represent 2D abstractions and coarse 

hex meshes obtained for 5 examples. Once again, it can be 

noted that these 2D abstractions are simpler and contain fewer 

branches than mid-surface/medial axis abstractions of similar 

objects. 

 

Figure 34: Heatsink 2D abstraction 
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Figure 35: Heatsink hexa mesh 

 

Figure 36: Flywheel 2D abstraction 

 

Figure 37: Flywheel hexa mesh 

 

 

 

Figure 38: Landing gear 2D abstraction 

 

Figure 39: Landing gear hexa mesh 

 

Figure 40: Drill bit 2D abstraction 

 

Figure 41: Drill bit hexa mesh 
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Figure 42: SpaceX Falcon-Heavy center booster 
half-gridfin 2D abstraction 

Figure 43: SpaceX Falcon-Heavy center booster 
half-gridfin hexa mesh 

9. CONCLUSION AND REMARKS

An automatic hexahedral meshing framework is presented that 

uses the  optimal properties of a Delaunay tetrahedralization to 

create a 2D abstraction and a block-structured hexahedral 

mesh. Several open questions remain including how to deal 

more effectively with various types of degeneracy. A few 

useful outcomes of this work are: 

1. The proposed 2D abstraction is simpler, has fewer

branches than a mid-surface/medial axis and, a-priori,

requires no pruning. It essentially lets the branching be

handled by the network of tetra and prism blocks. It could

possibly replace semi-automatic abstraction tools used in

today’s CAD systems.

2. The block-structured hex mesh has the special property

that the grid layering along extrusions and that along the

prism blocks do not interfere and thus allow for the

independent assignment of extrusion mesh density and

mesh resolution across the extrusions and azimuthally

within the prism and tetra blocks. This also allows for the

implementation of local and compact hex mesh

refinement schemes for local mesh refinement.

3. The hexahedral mesh layering near holes is adequately

oriented along hole features; which is a desirable quality

of FEA meshes.

4. A potential application of this type of combined

abstraction/hex meshing is in meshing ultra-thin objects

where vast swaths of extrusions coexists with a few

highly 3D zones. This would enable the creation of mixed 

shell and solid meshes from the same input object. 
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