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ABSTRACT

To provide straight-edged and curved piece-wise polynomial meshes that target a unique smooth geometry while
preserving the sharp features and smooth regions of the model, we propose a new fast curving method based on
hierarchical subdivision and blending. There is no need for underlying target geometry, it is only needed a straight-
edged mesh with boundary entities marked to characterize the geometry features, and a list of features to recast.
The method features a unique sharp-to-smooth modeling capability not fully available in standard CAD packages.
The goal is to obtain a volume mesh that under successive refinement leads to smooth regions bounded by the
corresponding sharp features. The examples show that it is possible to refine and obtain smooth curves and surfaces
while preserving sharp features determined by vertices and polylines. We conclude that the method is well-suited to
curve large quadratic and quartic meshes in low-memory configurations.
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1. INTRODUCTION

In flow simulations for wind energy, transport of pol-
lutants, and bio-engineering the boundary of the com-
putational domain is usually represented by a straight-
edged mesh obtained by sampling real data. This
straight-edged mesh approximates the geometry, at
di↵erent scales, corresponding to the viscous surfaces
to analyze such as topography [1, 2], urban areas [3],
and human organs. The mesh also presents a series of
sharp features, vertices, polylines bounded by vertices,
that the method should preserve, and that bound the
smooth regions of the computational model.

The resolution to approximate the geometry could be
insu�cient for the required flow analysis, and thus,
additional refinement of the boundary mesh would be
required. However, a standard refinement approach,
when no target geometry is available, could be inade-
quate for flow simulation in a twofold way. First, the
refined mesh might reproduce precisely the geometry
of the first straight-edged mesh and thus, introduce ar-
tificial flow artifacts close to initially non-smooth fea-
tures that should be smooth. Second, the refined mesh

might target a smooth surface geometry, implicitly de-
termined by the initial straight-edged mesh, but with-
out adequately respecting after successive refinement
the sharp features, curves, and vertices, of the compu-
tational model. Ideally, vertices should remain fixed,
and polylines should target a smooth limit curve.

Solving these issues is essential for those flow analy-
ses that start from a mesh obtained by sampling real
data where the computational model presents smooth
regions bounded by sharp features. Even they can be
useful in aeronautical applications where only legacy
data, in a format of vertices, and polyline and sur-
face meshes, is available. In some applications, prac-
titioners might also need, a non-standard but flexible
sharp-to-smooth modeling capability, to remove some
sharp features ensuring that surrounding regions be-
come smooth along with the removed feature.

Intending to provide piece-wise linear meshes or
curved piece-wise polynomial meshes that target a
unique smooth geometry while preserving the sharp
features of the model, our contribution is to propose a
new fast curving method based on hierarchical sub-
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division and blending with sharp-to-smooth model-
ing capabilities. Our approach only needs an initial
straight-edged mesh with boundary triangles marked
with surface identifiers, and a list of features to recast.
There is no need for underlying target geometry. The
goal of the method is to obtain a volume mesh of the
flow domain that under successive refinement leads to
smooth regions bounded by the sharp features deter-
mined after recasting. The recasting operation is de-
vised to implement a sharp-to-smooth modeling capa-
bility. We favored a fast and explicit curving method,
based on subdivision and blending, to an implicit ap-
proach formulation that features validity guarantees
or untangling capabilities, based on boundary curving
and optimization, but slower and more memory de-
manding. This favoring is so since the appearance of
invalid elements is small compared with the scale of
the generated meshes, and fast local untangling can
repair those invalid elements. This work details our
mesh curving methodology and illustrates its applica-
tion with the included numerical examples.

The proposed fast curving method based on hierar-
chical subdivision and blending with sharp-to-smooth
modeling capabilities is novel in many aspects:

• In mesh curving it is standard to have explicit
access to the boundary of the target geometry
[4, 5, 6, 7, 8, 9, 10, 11, 12] however, fewer works
have considered the case when the target ge-
ometry is not explicitly available. The work
presented in [13] proposes two curving meth-
ods based in weighted least squares approxima-
tions and piece-wise polynomial fittings to gen-
erate curved meshes of the target surfaces. Both
techniques guarantee C0-continuous curved sur-
face meshes whereas, in this work we approximate
with at least C0-continuous meshes a surrogate
geometry composed of feature surfaces with an
interior that is C1-continuous and C2-continuous
almost everywhere. Furthermore, herein, the C0-
continuity of the surface mesh is increased to C2-
continuity when using regular configurations of
quartic elements to interpolate the limit surface.

• The curved surface meshes provided by the
method in [13] can be used to bound the mesh
volumes and thus, to generate curved high-order
meshes when the boundary surfaces are not ex-
plicitly available. Furthermore, it is possible to
remove sharp features by selecting one-by-one the
mesh entities defining it [14]. Besides the sur-
face mesh curving method, the main di↵erences
with the latter work are that herein we use: a
hierarchical blending approach to curve the mesh
volume; and an all-in-one feature selection to per-
form sharp-to-smooth recasting.

• In mesh generation, Loop’s subdivision surfaces
have been used before to define surrogate geom-
etry [15] and also to curve quadratic and quar-
tic surface meshes [16] but not to obtain volume
meshes with curved boundaries. Later, the but-
terfly subdivision scheme [17] has been used to
relocate the boundary nodes when the geometry
is unavailable [18], but the volume is not curved
using hierarchical blending. Note that previous
methods use blending for mesh curving but in the
specific case of curving boundary layer elements
when the target geometry is available [19].

• There are alternative subdivision methods to gen-
erate curved volume meshes, featuring parallel
implementations, but they need as input a curved
mesh to define the surrogate geometry [20].

The organization of the rest of the paper is as follows.
First, in Sect. 2, we present the problem statement and
the methodology used in this work to solve it. Second,
in Sect. 3, we present some preliminary results on sub-
division methods required to develop the main contri-
butions of this paper. We detail these contributions in
Sect. 4 and Sect. 5, where we present the method to
generate curved high-order surface and volume meshes
from a given linear mesh when the target geometry is
unavailable. Following, in Sect. 6, we present several
results to illustrate the capabilities and main features
of the presented methods. To conclude, in Sect. 7, we
present some concluding remarks, to sum up the main
contributions of this work.

2. PROBLEM STATEMENT AND
METHODOLOGY

2.1 Problem Statement

The input data is a tetrahedral mesh with its boundary
entities marked to characterize the geometry features,
and a list of the features to be recast. A geometry
feature is characterized by a set of entities of the mesh
with the same identifier. Specifically, a vertex feature
describes a vertex point to preserve, and it is char-
acterized by the global identifier of the point to be
preserved. A curve feature describes a curve to pre-
serve. Each curve feature is characterized by a list of
edges with the same curve identifier. Finally, a sur-
face feature describes a surface to preserve. A list of
boundary triangles with the same identifier character-
izes a surface feature.

Alternatively, we can obtain the geometry features by
considering a tetrahedral mesh when only the surface
features are described. That is, if only the bound-
ary triangles are marked, we can retrieve the feature
curves from the intersection of the boundary of two or
more feature surfaces. Similarly, vertex features can
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Figure 1: Method: (a) a linear tetrahedral mesh,
with marked boundary (b) curves and (c) surfaces,
is curved to obtain (d) a curved tetrahedral mesh of
polynomial degree four.

be determined by the intersection of two or more fea-
ture curves.

In addition to the tetrahedral mesh and the geometry
features, we have an optional input of which geome-
try features to recast. Recasting a geometry feature
consists in removing it from the list of features to pre-
serve and merging adjacent regions to obtain a smooth
model along the removed feature. That is, if we recast
a curve, we remove the curve feature and merge the
two adjacent surfaces. While when we recast a vertex,
we remove the vertex feature and merge the curves
incident to the vertex. Since each geometry feature
is associated with a unique identifier, the list of fea-
tures to be recast is a sub-sequence of these unique
identifiers.

Given the input modeled tetrahedral mesh, the out-
put of this work is a high-order tetrahedral mesh of
polynomial degree p with a boundary preserving the
marked sharp features and satisfying three properties.
First, high-order element vertices interpolate the ini-
tial linear mesh nodes. Second, the nodes of the high-
order edges that belong to a feature curve and are not
adjacent to a feature vertex (inner curve edges) inter-
polate a cubic C2-continuous curve. Third, the nodes
of the high-order elements that belong to a feature sur-
face and are not adjacent to a feature curve or vertex

(inner surface elements) interpolate an almost every-
where quartic C2-continuous surface. These properties
provide regularity guarantees in the output mesh that
are discussed in Sect. 4.3.

2.2 Method: Hierarchical Subdivision and
Blending

The curved high-order mesh generation procedure pro-
posed in this work is composed of four main steps:

1. Approximate a surrogate boundary. Given
a linear tetrahedral mesh, Fig. 1(a), we extract
its boundary. The boundary is a linear triangu-
lar mesh with its entities marked, see Fig. 1(b)
and Fig. 1(c), and by means of the hierarchical
subdivision of its elements we generate a curved
high-order triangular surface mesh. The curved
surface mesh approximates a surrogate boundary
composed of feature surfaces with an interior that
is C1-continuous and C2-continuous almost every-
where.

This surrogate is determined by the subdivision
of the curves and surfaces, and preserves the
sharp features and smooth regions marked on the
boundary of the initial volume mesh. See details
in Sect. 4.

2. Substitute the boundary of the volume

mesh. We increase the polynomial degree of
the volume mesh and replace the straight-sided
boundary of the current high-order volume mesh
by the high-order surface mesh obtained in the
first step. See details in Sect. 5.1.

3. Accommodate the curvature of the bound-

ary. We accommodate the curvature of the
curved surface mesh to the boundary volume ele-
ments using an explicit hierarchical blending, see
Fig. 1(d). See details in Sect. 5.2.

4. Local untangling. If necessary, we optimize the
inverted elements locally following the approach
detailed in [8, 9].

In some applications, it may be desired to perform
a sharp-to-smooth modeling of the geometry. There-
fore, as a preprocess, we can recast the non-desired
geometry features accordingly to the list of features to
remove provided as input to obtain a smoother sur-
rogate geometry. The recasting process is detailed in
Sect. 5.1.

3. PRELIMINARIES: CURVE AND
SURFACE MESH SUBDIVISION

In this section, we present the approximative subdi-
vision algorithms that we use to refine the boundary
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of a tetrahedral volume mesh. The boundary mesh is
composed of vertices, curves, and surfaces. Then, the
subdivision is performed hierarchically, that is, ver-
tices remain fixed, curves are refined using a curve
subdivision scheme and surfaces are subdivided using
a surface subdivision scheme. Our goal is to generate
a finer boundary mesh that targets a smooth limit sur-
face. Therefore, the curve subdivision scheme has to
generate new points consistently with the subdivision
surface scheme.

In Sect. 3.1, we detail the curve subdivision algorithm
we use in this work, and Sect. 3.2 recalls Loop’s sub-
division surface scheme. Although these methods are
approximative, in Sect. 3.3 we explain how they can
be modified to interpolate the initial mesh points pre-
serving the same continuity properties.

3.1 Curve Subdivision Scheme

The curve subdivision scheme used in this work was
originally presented in [21]. Successive applications
of the algorithm generate finer polygons, all of them
with the same limit curve determined by the ini-
tial mesh, denoted as control mesh. This curve is
parametrized by a polynomial of degree three and it is
C2-continuous.

Given a polygon, the curve subdivision scheme consists
of three steps: generate a new node for each edge,
update the position of the original nodes, and define
the new elements of the finer mesh. A new edge point
is generated at the midpoint of the two endpoints of
the segment. Specifically, at refinement level l+1, the
edge connecting nodes i and i + 1 is divided and the
position of the new edge node, x(i,i+1), is given by

x(i,i+1) =
1
2

⇣
xl

i + xl
i+1

⌘
, (1)

where xk
j denotes the position of node j at level k.

The position of the original nodes is also modified and
they are relocated to a linear combination of their po-
sition and the position of their neighboring nodes at
level l,

xl+1
i =

1
8

⇣
xl

i�1 + 6xl
i + xl

i+1

⌘
. (2)

As subdivision proceeds, the refined polygons tend to
a cubic C2-continuous curve. We remark that the ini-
tial control mesh determines the limiting curve, so all
the refined polygons converge to the same curve. Fur-
thermore, it is possible to compute the position in the
limit curve of the nodes at any refinement step from
the following expression

xl,1
i =

1
6

⇣
xl

i�1 + 4xl
i + xl

i+1

⌘
, (3)

where xk,1
j denotes the limiting position of the node

j at refinement level k.

(a) (b)

Figure 2: Edge and point configurations for Loop’s
subdivision surfaces. (a) A new node, x(1,2), is gener-
ated on the edge (1, 2). (b) Neighbor nodes {xl

i} of a
node xl

v.

3.2 Surface Subdivision Scheme

In this work, we subdivide a given triangular surface
mesh using Loop’s subdivision algorithm [22]. Loop’s
subdivision scheme consists of three steps: generate a
new node for each edge, update the position of the
original nodes, and refine the original triangle into
four smaller ones. Successive applications of the al-
gorithm generate finer triangular meshes, all of them
with the same limit surface determined by the initial
control mesh. This surface is C2-continuous almost
everywhere.

Before detailing Loop’s subdivision process, we present
several definitions related to neighbor elements and
nodes. The neighbor elements of a node v are the
elements incident to v, and the neighbor nodes of v
are the vertices of these elements. For the case of
simplices, there exists an equivalent definition based
on edges. The neighbor edges of a node v are the
edges incident to v, and the neighbor nodes of v are
the vertices of these edges. We say that a surface node
is regular if it has six neighbor nodes. Otherwise, we
say the node is irregular. Around regular nodes, the
limit surface is parametrized by a polynomial of degree
four and is C2-continuous, while on irregular nodes it
is of class C1[23].

In the Loop subdivision algorithm, a new node is gen-
erated for each edge. Note that in a surface mesh an
edge connects two nodes and belongs to two elements.
Let x1, ..., x4 be the position of four points in R3 that
define two triangles (1, 2, 3) and (1, 4, 2). These trian-
gles share the edge (1, 2), as shown in Fig. 2(a). In this
edge, a new node, with position denoted by x(1,2), is
generated using the expression

x(1,2) =
3
8
(x1 + x2) +

1
8
(x3 + x4) . (4)

In addition to generating the new mid-edge nodes,
Loop’s scheme also modifies the location of the ver-
tices of the initial mesh. At refinement level l, the
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Figure 3: Subdivision process: (a) element of the
original mesh; (b) original element with updated ver-
tex nodes (white dots), and new edge nodes (black
dots); and (c) subdivided element after one iteration
of the process.

position of an existing node, xl
v, with neighbor nodes

{xl
i}i=1,...,k, Fig. 2(b), is modified according to

xl+1
v = (1� k!k)x

l
v + !k

kX

i=1

xl
i, (5)

where !k is defined as

!k =
1
k

5
8
�
✓
3
8
+

1
4
cos

✓
2⇡
k

◆◆2
!
.

If we connect and relabel the three new nodes gen-
erated for each edge, the subdivided surface mesh is
obtained, see Fig. 3. Note that all the nodes generated
on the edges of the mesh are regular. This is so since
each edge is shared by two triangles, and the new ele-
ments are defined by connecting the mid-edge nodes.
Therefore, since the percentage of regular nodes in-
creases with each iteration, the discontinuity on the
derivatives around irregular nodes can be mitigated
applying successively the scheme, if desired.

We remark that the subdivision scheme defines a hi-
erarchy of control meshes, all of them converging to
the same limit surface. Moreover, we can compute the
limiting location for the nodes at any refinement level.
In particular, given a linear mesh, the limit position

for the node v at any refinement level l, denoted by
xl,1

v , is

xl,1
v = (1� k�k)x

l
v + �k

kX

i=1

xl
i, (6)

where {xl
i}i=1,...,k are the positions of the neighbor

nodes of v at level l, and where the weights are com-
puted as

�k =
1

k + 3
8!k

.

We highlight that there exists an explicit parametriza-
tion of the limit surface on the elements in which all
the nodes are regular. This parametrization is indeed
a piecewise polynomial of degree four, and its explicit
expression can be found in [15, 24].

3.3 Non-interpolative to Interpolative

Given a control mesh, the schemes in Sect. 3.1 and
Sect. 3.2 for mesh subdivision generate a hierarchy of
subdivided meshes all of them tending to the same
limit manifold (curve or surface). These schemes do
not preserve the position of the initial vertices of the
mesh. However, a new control mesh can be computed
so that the limit manifold contains the nodes of the
initial mesh [15]. That is, new points can be found
such that the limit curves and surfaces interpolate the
given data points.

Specifically, let ' be the operator that maps the po-
sition of the initial mesh nodes, X0, onto their limit
position. Then, we compute a new control mesh, with
nodes position denoted by XC , such that

' (XC) = X0.

In the case of the subdivision schemes considered in
this work, ' is a linear application with rows given by
the coe�cients in Eq. (3) or Eq. (6), depending on the
point to be updated. This matrix is sparse and the
solution of the linear system can be computed using
a sparse direct solver. In our Python implementation,
we call the sparse direct solver of the SuperLU library
[25, 26] through the Python SciPy package [27]. Recall
that this operation is performed on the boundary of
a tetrahedral mesh. Therefore, the dimension of the
linear system is of the order of the number of boundary
nodes and not of the order of nodes of the volume
mesh.

4. APPROXIMATE SURROGATE
GEOMETRY: CURVED SURFACE

MESH

In this section, we detail the procedure based on sub-
division that we propose in this work to generate a
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Algorithm 1 High-order surface mesh.

Input: MarkedMesh M, PolynomialDegree p
Output: MarkedMesh Mp

1: function GenerateHOSurfaceMesh
2: MC  GenerateNewControlMesh(M)
3: if p is 2 then

4: M0  SurfaceSubdivision(MC , 1)
5: else if p is 4 then

6: M0  SurfaceSubdivision(MC , 2)
7: end if

8: {x1
i } MapNodesOntoLimitPosition(M0)

9: {ep
i } GenerateHOTopology(M0, MC , p)

10: Mp  SetMesh({x1
i }, {ep

i })
11: return Mp

12: end function

curved surface mesh that approximates a smooth sur-
rogate boundary.

In Algorithm 1, we describe the main steps of this pro-
cess. First, in Line 2, we cast the triangular surface
mesh to a new control mesh to ensure that the loca-
tion of the initial vertices is preserved in the high-order
mesh, as detailed in Sect. 3.3. Given the new control
mesh, the subdivision method determines a limit man-
ifold that in this work corresponds to the surrogate
geometry for the curving procedure. In addition, we
exploit the structure of the subdivision surface method
to determine the new high-order elements. In partic-
ular, four subelements of a linear triangle, once sub-
divided, determine one element of polynomial degree
p = 2. Similarly, sixteen linear elements obtained after
applying two iterations of the subdivision algorithm to
a linear element determine a unique element of poly-
nomial degree p = 4. Therefore, in Lines 4 and 6
we call the function SurfaceSubdivision to perform
the number of subdivision required for the generation
of the high-order mesh. The surface subdivision pro-
cess with feature preservation proposed in this work,
SurfaceSubdivision, is detailed in Algorithm 2 from
Sect. 4.1. Following, the nodes are mapped onto its
limit position, Line 8, interpolating the surrogate ge-
ometry. Finally, in Line 9, the subdivided mesh is cast
to a high-order mesh by reinterpreting the children of
each element as a new high-order element. The cast-
ing of the subdivision to a high-order mesh and the
approximation of the surrogate geometry are detailed
in Sect. 4.2.

We highlight that the surrogate geometry for the gen-
eration of the high-order mesh is determined by the
initial linear mesh and the given geometry features.
However, as it will be detailed in Sect. 4.3, prior sub-
division steps to the ones performed in Lines 4 and 6
improve the smoothness of the curved high-order mesh
that approximates the surrogate. Therefore, if desired,
after computing the new control mesh in Line 2 a new

finer straight-sided mesh could be generated applying
several subdivision steps. From this point, the curving
procedure would continue as detailed in Algorithm 1.

In this work, we have favored a subdivision scheme
that preserves the location of the vertices of the origi-
nal linear mesh. To this aim, in Line 2 of Algorithm 1
a new control mesh for the subdivision procedure is
computed. If the standard approximative version of
the subdivision schemes is preferred, the same pro-
cedure applies but the generation of the new control
mesh can be omitted.

4.1 Surrogate Geometry: Surface Mesh
Subdivision

This work is devoted to curving linear meshes when
no geometry is available. Thus, surface mesh subdivi-
sion converges to a limit manifold that determines the
surrogate geometry for the mesh curving problem. In
addition, in the interior of the feature curves it is C2-
continuous, whereas in the interior of the feature sur-
faces it is C1-continuous becoming even C2-continuous
in regular regions of the mesh. In this section, we
propose a hierarchical subdivision process that allows
preserving the sharp features marked in the mesh.

We consider a triangular surface mesh with its entities
characterizing the geometry features to preserve. Fol-
lowing Algorithm 2, three main steps are performed.
First, in Line 5, we generate the points of the subdi-
vided mesh. Next, in Line 6, the elements of the finer
mesh are generated. Finally, the subdivided mesh in-
herits the marks from the coarse mesh, Line 8. These
steps are repeated for all the specified subdivision it-
erations.

The generation of the points of the hierarchical subdi-
vision scheme is performed looping through the unique
edges and nodes of the mesh, as detailed in Algo-
rithm 3. Since each node of the mesh is given a unique
identifier, an edge is uniquely defined by the nodes it
connects. Consider an edge e = (i, j). If the edge be-
longs to a feature curve, the position of the new edge
node, xnew

e , is at the midpoint of the edge points xi

and xj , see Eq. (1), Line 5. In contrast, if e belongs
to a feature surface, in order to generate the new edge
point, we need to evaluate Eq. (4) and thus, we need
access to the nodes of the elements sharing the edge e
but opposite to it, Line 9. We denote the position of
these nodes by xt1 and xt2 . Therefore, the position of
the new edge node is given accordingly to Line 10.

In order to update the position of the original nodes,
we loop through the nodes of the mesh. Consider a
node v. If v is a feature vertex, its position does not
change, so xnew

v = xv, see Line 16. To update the
position of a point that belongs to a curve by the eval-
uation of Eq. (2), we need access to the two neighbor
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Algorithm 2 Surface subdivision.

Input: MarkedMesh M, NumberOfSubdivisions N
Output: MarkedMesh M0

1: function SurfaceSubdivision
2: M0  M
3: for j 2 {1, . . . , N} do

4: M0  M0

5: {xi} GeneratePointsSubdivision(M0)
6: {ei} GenerateFinerTopology(M0)
7: M0  SetMesh({xi}, {ei})
8: M0  InheritMarks(M0, M0)
9: end for

10: return M0

11: end function

nodes in the curve. We denote the position of these
two nodes by xi and xj , see Line 19. Now, the up-
dated position of node v is given accordingly to Line
20. Analogously, we update the position of a node that
belongs to a surface. In Line 24, we get the position of
its neighbor nodes {xi}1...k, and the position of node
v is updated using Eq. (5) in Line 25.

We highlight that Algorithm 3 combines two types of
subdivision algorithms. Therefore, the limit manifold,
which determines our surrogate geometry, inherits dif-
ferent smoothness guarantees from the original subdi-
vision algorithms that are discussed in Sect. 4.3.

4.2 Cast Subdivision to Curved High-order
Surface Mesh and Interpolate Surro-
gate Geometry

The hierarchical subdivision procedure presented in
Sect. 4.1 generates a new point for each edge of the
mesh and four elements for each refined linear trian-
gle. Therefore, in the curving process in Algorithm 1,
we exploit this structure and reinterpret the topology
from the children of each original element into a new
high-order element. An element of polynomial degree
two is obtained after one application of the subdivision
algorithm to a linear element. Two iterations of the
subdivision scheme lead to a quartic element. There-
fore, high-order element generation based on subdi-
vision defines elements of polynomial degree p = 2k,
where k is the number of iterations of the subdivision
schemes performed. The limit surface is parametrized
by a polynomial of degree four around regular nodes,
therefore, we focus on quartic meshes since then the
limit surface and its regularity is exactly captured
around regular nodes for this polynomial degree.

The main steps of the reinterpretation of the sub-
divided elements as a unique high-order element are
stated in Algorithm 4. For each element of the initial
linear mesh, ei, we obtain the elements of the finer
mesh generated from the subdivision of ei, Line 3.

Algorithm 3 Generate points of surface subdivision.

Input: MarkedMesh M
Output: Points {xnew

i }
1: function GeneratePointsSubdivision
2: for each edge e = (i, j) of the mesh do

3: if e belongs to a curve then

4: . New edge point using Eq. (1)
5: xnew

e  1
2 (xi + xj)

6: else

7: . e belongs to a surface
8: . New edge point using Eq. (4)
9: xt1 ,xt2  GetOppositeNodes(e)

10: xnew
e  3

8 (xi + xj) + 1
8 (xt1 + xt2)

11: end if

12: end for

13: for each node v of the mesh do

14: if v is a vertex point then
15: . Point remains fixed
16: xnew

v  xv

17: else if v belong to a curve then

18: . Update position using Eq. (2)
19: xi, xj  GetNeighborsInCurve(v)
20: xnew

v  1
8 (xi + xj) + 6

8xv

21: else

22: . v belongs to a surface
23: . Update position using Eq. (5)
24: {xi}i=1...k  GetNeighborsInSurface(v)
25: xnew

v  (1� k!k)xv + !k
Pk

i=1 xi

26: end if

27: end for

28: return {xnew
i }

29: end function

When used to generate meshes of polynomial degree
two, this set contains four linear elements, whereas
when used to generate a new mesh of degree four, this
set contains sixteen elements. Finally, in Line 4, this
set of linear elements is reinterpreted as a unique high-
order element.

Specifically, given an element of the linear mesh,
Fig. 4(a), one iteration of the hierarchical subdivi-
sion scheme generates three edge nodes and modifies
the position of the vertices, Fig. 4(b). We denote by
4, 5 and 6 the edge nodes created from the subdivi-
sion of edge (1, 2), (1, 3) and (2, 3), respectively. Now,
the nodes are mapped onto its limiting position using
Eq. (3) or Eq. (6). Finally, instead of connecting the
edge nodes and subdividing the element as in Fig. 4(c),
a curved element of polynomial degree two is defined
by considering the new generated nodes as the mid-
edge nodes that are required to define an element of
polynomial degree two, see Fig. 4(d).

This process is repeated for all the elements, obtaining
a curved surface mesh of polynomial degree two that
approximates the surrogate geometry with third order
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Algorithm 4 Reinterpret finer mesh as a high-order
mesh.
Input: FineMesh M0, CoarseMesh M, Polynomi-

alDegree p
Output: Elements {ep

i }
1: function GenerateHOTopology
2: for each element ei of M do

3: {ei,j} GetChildren(ei, M0)
4: ep

i  Reinterpret({ei,j}, p)
5: end for

6: return {ep
i }

7: end function

accuracy, see Sect. 4.3 for more details on the regu-
larity of the high-order mesh. This high-order mesh
has the same number of nodes as the subdivided mesh
but it has the same number of elements as the original
linear mesh.

For quartic polynomial degree, p = 4, each element is
defined by fifteen nodes. The procedure to generate
the curved mesh of degree four from a given linear
mesh is similar to the quadratic case. Applying twice
the subdivision process fifteen new nodes are obtained,
see Fig. 5(c). Next, these nodes are mapped onto its
limiting position using Eq. (3) or Eq. (6). Finally, we
reinterpret the topology of the sixteen elements from
the subdivision into a unique element of polynomial
degree four, see Fig. 5(d). Specifically, nodes 7, 8, 9,
10, 11, 12, 13, 14 and 15 are the edge nodes created
from the subdivision of edges (1, 4), (1, 5), (2, 4), (2, 6),
(3, 5), (3, 6), (4, 5), (4, 6) and (5, 6), respectively.

This process is repeated for all the elements, obtaining
a curved surface mesh of polynomial degree four with
the same number of nodes as after applying two times
the subdivision scheme to the original linear mesh, al-
though the number of elements is the same than in the
linear mesh.

4.3 Smoothness of the Surrogate Geome-
try and Curved Surface Mesh

In this section, we analyze the smoothness of the surro-
gate geometry and of the high-order meshes obtained
using the approach presented in Sect. 4.2.

The surrogate boundary is composed of the union of
the limit curves and the limit surfaces determined by
the control mesh. On the one hand, the curve subdi-
vision scheme, see Sect. 3.1, ensures that in the inner
edges of the feature curves (not adjacent to a feature
vertex) the limit curve is cubic and C2-continuous. On
the contrary, curve edges of the control mesh that are
incident to a vertex point determine the region where
the limit curve is of class C0.

On the other hand, Loop’s subdivision scheme, see

(a) (b)

(c) (d)

Figure 4: Generation of an element of polynomial de-
gree two from a linear one. (a) Straight-sided element.
(b) Original element once new nodes (black dots) have
been generated and the position of the old ones (white
dots) have been modified by the hierarchical subdivi-
sion scheme. (c) Subdivision of the linear element. (d)
Curved element of polynomial degree two, displaying
with dashed lines the four elements from the subdivi-
sion scheme.

Sect. 3.2, ensures that in the inner triangles of the
feature surfaces (not adjacent to a feature curve or
vertex), the limit surface is C1-continuous, and C2-
continuous almost everywhere. In particular, in the
inner triangles, this surface is of class C2 everywhere
except at the position of the irregular vertices of the
initial control mesh. At these points, the surface is
strictly C1-continuous. The surface triangles that are
adjacent to a vertex point or a curve determine the
region where the limit surface is C0-continuous. More-
over, in those triangles where the limit surface is of
class C2, it can be parametrized by quartic polynomi-
als. We remark that this discontinuity in the deriva-
tives is confined. Fig. 6(a) shows a regular mesh fea-
turing inner triangles in dark gray and triangles ad-
jacent to a feature curve (bold) in light gray. In this
configuration, the limit surface is of class C2 only on
the dark gray region. The limit curve determined by
the bold edges is also of class C2.

Regarding the smoothness of the obtained high-order
meshes, curve (surface) meshes of polynomial degree
p = 2 approximate the cubic (quartic) limit curve (sur-
face) with third-order accuracy. That is, meshes of
polynomial degree 2 are strictly C0-continuous, and no
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(a) (b)

(c) (d)

Figure 5: Generation of an element of polynomial
degree four from a linear one. (a) Straight-sided el-
ement. (b) First subdivision step. (c) Second subdi-
vision step. (d) Curved element of polynomial degree
four, displaying with dashed lines the sixteen elements
from the subdivision scheme.

guarantees of the C2-continuity are given by the pro-
posed subdivision-based curving method. However,
some prior subdivisions can be applied to the initial
linear mesh using the subdivision method presented in
Sect. 4.1. Next, this refined mesh can be curved with
the subdivision-based curving method proposed in Al-
gorithm 1. This new finer high-order mesh determines
a better approximation of the surrogate geometry, and
consequently, its smoothness is also improved.

Following, we analyze the smoothness of the meshes
of polynomial degree four. First, the inner edges of
the feature curves of the high-order mesh exactly cap-
ture the C2-continuous limit curve. This is so since the
limit curve is parametrized by a third degree polyno-
mial, while the elements are described by shape func-
tions of degree four. Similarly to the curve case, the
nodes of the surface mesh also interpolate the limit
surface. However, the surface mesh does not inherit
the smoothness of the limit surface straight-forwardly
as in the curve case. This is so since the limit surface is
parameterized element-wise, but the parameterization
is of degree four only in a regular element, that is, in
an element where its three vertices have six neighbors.

In the interior of an element, the mesh is of class C1.
Therefore, the smoothness of the surface mesh has to
be analyzed along the edges (interfaces between two in-

(a) (b)

(c) (d)

(e) (f)

Figure 6: Dark gray regions indicate C2 smooth-
ness, while light gray color indicate regions where
C2-continuity cannot be ensured. (a) Regular mesh
around a feature curve (bold). (b) Mesh with a regular
edge (bold). (c) Mesh with an irregular edge (bold).
(d) Regular patch around a regular vertex. (e) Irreg-
ular patch (light gray) around an irregular vertex. (f)
Mitigation of the irregular patch after subdividing the
mesh.

ner surface elements) and vertices (interfaces between
more than two inner surface elements). We first ana-
lyze the case between two elements that share an edge.
We say an edge is a regular edge if all the vertices
of the two triangles that share such edge are regular,
Fig. 6(b), i.e. if the vertices have six neighbors. In
this case, the two elements of degree four that share
the edge interpolate exactly the quartic limit surface.
Hence both elements are exactly equal to the limit sur-
face and, since the limit surface is C2-continuous, the
interface (edge) between the two elements also is. In
general, no guarantee of the continuity of the deriva-
tives can be deduced along an edge that is not regular,
see Fig. 6(c).

Following, we analyze the smoothness of the mesh
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around the vertices of the inner surface elements.
Given a regular vertex (with six neighbors), if all the
edges incident to it are regular then the surface mesh
is of class C2 around such vertex. In particular, if all
the edges incident to a regular vertex are regular, then
all its neighbor vertices are also regular, as observed
in Fig. 6(d). In such regions, colored in Fig. 6(d)
in dark gray, the surface mesh captures exactly the
limit surface and inherits all its features. The pres-
ence of an irregular vertex, as illustrated in Fig. 6(e),
implies the surface mesh to approximate the limit sur-
face, rather than exactly capturing it. Therefore, on
the one hand, around regular patches, we are able to
interpolate and exactly capture the limit surface and
obtain a C2-continuous surface mesh. On the other
hand, around irregular patches, the limit surface is in-
terpolated and approximated with fifth order accuracy
but not matched exactly.

In order to improve the smoothness of the high-order
mesh and mitigate this issue, the structure induced in
the mesh by Loop’s subdivision process can be ex-
ploited. All the new vertices generated by Loop’s
subdivision are regular. Therefore, the linear mesh,
Fig. 6(e), can be subdivided before generating the
mesh of degree four with the presented procedure. As
observed in Fig. 6(f) in contrast to Fig. 6(e), the light
gray irregular region where the limit surface (and sub-
sequently its smoothness) is not exactly captured is re-
duced. Exploiting prior refinements of the linear mesh,
the regions where the high-order surface mesh is not
C2-continuous can be successively reduced.

5. CURVED VOLUME MESH
APPROXIMATING A SURROGATE

BOUNDARY

In this section, we detail how a linear tetrahedral mesh
with marked boundary entities is curved while pre-
serving the sharp features. In Sect. 5.1, we detail the
sharp-to-smooth modeling of the geometry features
and the replacement of the straight-edged boundary
of the linear mesh by the curved boundary mesh. In
Sect. 5.2, the curvature on the boundary is accom-
modated to the interior using a blending technique.
This procedure leads to a high-order tetrahedral mesh
where its boundary approximates a surrogate geom-
etry composed of feature surfaces with an interior
that is C1-continuous and C2-continuous almost every-
where. In addition, the vertices of the high-order mesh
are kept in the same position than in the initial linear
mesh.

Algorithm 5 Curve volume mesh recasting features.

Input: MarkedMesh M, PolynomialDegree p, Fea-
turesToRecast R

Output: MarkedMesh Mp

1: function CurveMarkedVolumeMesh
2: M RecastFeatures(M, R)
3: Mp  GenerateHOVolumeMesh(M, p)
4: return Mp

5: end function

Algorithm 6 Recast geometry features.

Input: MarkedMesh M, FeaturesToRecast R
Output: MarkedMesh M
1: function RecastFeatures
2: for each feature f in R do

3: M RemoveFeatureFromList(M, f)
4: M MergeIncidentFeatures(M, f)
5: end for

6: return M
7: end function

5.1 Substitute the Boundary of the Vol-
ume Mesh

In this section, we detail the subdivision-based curv-
ing of a high-order mesh. This process is presented in
Algorithm 5. First, in Line 2, we recast the desired fea-
ture entities. Then, in Line 3, we generate a high-order
volume mesh preserving the sharp features provided
by the new model once the original entities have been
recast. These processes, denoted as RecastFeatures
and GenerateHOVolumeMesh, are next detailed in Al-
gorithms 6 and 7.

The first step to curve the volume mesh is to recast,
if necessary, the geometry features present in the orig-
inal model. Recall that vertices, curves, and surfaces
are characterized by a unique identifier. Thus, in or-
der to recast a sharp feature, it is enough to provide
its identifier. That is, in Algorithm 6, the variable
FeaturesToRecast contains a list of the identifiers of
the feature vertices and curves to be recast. Specif-
ically, the recasting of a feature is composed of two
steps: remove the feature from the list of features to
preserve, Line 3; and merge the features incident to
such feature, Line 4. Since each feature is described
by a unique identifier, the process of merging the inci-
dent features reduces to assigning the same identifier
to these features.

Next, the curving method based on hierarchical sub-
division and blending is performed. The generation of
a high-order volume mesh is described in Algorithm 7.
First, given a linear tetrahedral mesh with the recast
features, Fig. 7(a), we extract its boundary, Line 2.
The boundary is a surface mesh that inherits the ge-
ometry features of the volume mesh. Next, in Line
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Algorithm 7 High-order volume mesh.

Input: MarkedMesh M, PolynomialDegree p
Output: MarkedMesh Mp

1: function GenerateHOVolumeMesh
2: @M  ExtractBoundary(M)
3: @Mp  GenerateHOSurfaceMesh(@M , p)
4: Mp  IncreasePolynomialDegree(M)
5: Mp  ReplaceBoundary(Mp, @Mp)
6: Mp  AccommodateCurvature(Mp, M)
7: if Mp has invalid elements then

8: Mp  OptimizeMesh(Mp)
9: end if

10: return Mp

11: end function

3, we call the function GenerateHOSurfaceMesh de-
scribed in Algorithm 1 to generate a surface mesh
of polynomial degree p preserving the sharp features.
Third, we generate a straight-edged high-order volume
mesh, Line 4, illustrated in Fig. 7(b). Following, in
Line 5, we replace the boundary of the straight-edged
mesh by the curved surface mesh, see Fig. 7(c). Then,
in Line 6, the curvature of the surface is accommo-
dated to the elements adjacent to boundary, using a
blending technique to be described in Sect. 5.2. Fi-
nally, if the mesh contains tangled elements, it is op-
timized using [8, 9], see Line 8.

The methodology proposed in this work can also be
used to generate, given an initial linear mesh, finer
linear meshes that successively improve the approxi-
mation of the surrogate geometry. To do so, the gen-
erated high-order mesh can be reinterpreted as a linear
mesh by the decomposition of each high-order element
into linear elements. Specifically, the reference high-
order element is decomposed into several structured
linear elements determined by the high-order nodes.
In particular, each quadratic element is decomposed
into eight linear tetrahedra, while an element of poly-
nomial degree four leads to sixty-four linear elements.
If the linear mesh contains tangled elements, the opti-
mization procedure described in [8] is applied to ensure
a valid mesh.

5.2 Accommodate the Curvature of the
Boundary

In Algorithm 7, after replacing the curved boundary
in the straight-sided high-order mesh, Line 5, the ob-
tained high-order mesh may contain low-quality or
tangled elements, see Fig. 8(a) and 8(b). Since the
curvature information is provided by the surface mesh,
only boundary tetrahedra are a↵ected and therefore,
the number of invalid elements is small compared with
the scale of the generated meshes. Thus, similarly
to [19], as an attempt to improve the mesh quality

(a) (b)

(c)

Figure 7: Curving of the boundary for a boundary el-
ement of polynomial degree p = 2. (a) Linear physical
element, where the face (2 3 4) belongs to the bound-
ary. (b) Straight-edged physical element of polynomial
degree two. (c) Curved boundary element of polyno-
mial degree two, displaying with dashed lines the four
elements from the subdivision scheme applied to the
boundary.

in a fast and explicit manner, in Line 6 in function
AccommodateCurvature, we use Transfinite Interpola-
tion (TFI) [28] to accommodate the curved surface to
those entities of the boundary elements not present in
the surface mesh. Specifically, given a boundary ele-
ment, we use transfinite interpolation hierarchically on
its entities to accommodate the curving of the bound-
ary. That is, first we relocate the nodes on edges,
then nodes on faces, and finally, nodes in the interior
of tetrahedra.

First, consider an edge of a high-order boundary el-
ement with one of its endpoints on the curved sur-
face. The new location of the edge nodes is given
by the linear isoparametric mapping between the one-
dimensional reference domain and the physical edge,
denoted as �1. Specifically, the new position of the kth
node of the edge, xk, for k = 0, . . . , p, is determined
as

xk = �1 (⇠k) =
1X

l=0

xvlNvl (⇠k)

where ⇠k is the position of the kth node of the reference
domain, xvl is the position of the lth endpoint of the
edge, and Nvl is the linear nodal shape function of the
interval associated to the lth endpoint. In Fig. 8(c),
we illustrate the relocation of the nodes of the edges
in a triangle when one of its edges (in bold) is on the
boundary.

Now, we are interested in relocating the nodes on the
interior of a face of a boundary tetrahedron. On the
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(a)
(b)

(c) (d)

Figure 8: Accommodating the curvature to a triangu-
lar element of polynomial degree p = 4. (a) Straight-
edged triangle with a boundary edge (in bold). (b)
Triangle with curved boundary. (c) Transfinite inter-
polation applied to the edges, (d) and to the face.

one hand, if such face belongs to the boundary, its
nodes have been already relocated by the subdivision
scheme, see bold edge in Fig. 8(c). On the other hand,
if such face does not belong to the boundary, its edge
nodes have been modified using the transfinite inter-
polation for edges explained above, see non-bold edges
in Fig. 8(c). For the latter, we apply the transfinite
interpolation for faces, that is, we accommodate the
deformation of the curving of the edges to the interior
of the triangular faces.

We denote by fi the edge of the triangle opposed to
vertex i, i = 1, 2, 3. Let us denote as xfi,k the coor-
dinates of the kth node of the edge fi in the physical
element, k = 0, . . . , p. These nodes are fixed now,
since as previously detailed their location has already
been computed. Therefore, each curved or relocated
edge can be parametrized using the restriction to such
edge of the two-dimensional isoparametric mapping of
degree p, �p, as:

�fi (⇠) := �p|fi (⇠) =
pX

k=0

xfi,kNfi,k (⇠) (7)

where Nfi,k (⇠) is the high-order nodal shape function
of the triangle associated to the kth node of the edge
fi. In particular, the boundary of the triangle is fixed
and parameterized by the three mappings {�fi}i=1,2,3.

Consider a point x in the physical triangle, to which
we want to compute its displaced position in terms of
the location of the boundary edge nodes. Denote by ⇠
the position of the point in the reference triangle ex-
pressed in cartesian coordinates such that �p (⇠) = x.
Now, denote by � the same point in the reference do-
main expressed in barycentric coordinates (�1,�2,�3),

P3
i=1 �i = 1. Following [28], we compute the projec-

tion of the point to the edges. A point on an edge
can be parametrized as a function of the barycentric
coordinates of the two vertices of the triangle defining
the edge. Therefore, two di↵erent projections (�j

f⇤
for

j 2 f⇤) are computed for each one of the three edges
of the triangle (rows, �⇤

fi for i = 1, 2, 3):

f1 = (2, 3) :

(
�2

f1 = (0, 1� �3,�3) ,

�3
f1 = (0,�2, 1� �2) ,

f2 = (1, 3) :

(
�1

f2 = (1� �3, 0,�3) ,

�3
f2 = (�1, 0, 1� �1) ,

f3 = (1, 2) :

(
�1

f3 = (1� �2,�2, 0) ,

�2
f3 = (�1, 1� �1, 0) .

Note that �j
fi

belongs to edge fi and has the jth com-
ponent expressed as a function of the others. Then,
we express these six projections of the point at the
edges, computed in barycentric coordinates, back in
the reference coordinates ⇠. As previously remarked,
we denote the change from barycentric coordinates of a
point �j

fi
to reference coordinates as ⇠j

fi
, for i = 1, 2, 3.

Since these points are on the edges of the triangle, they
can be mapped onto the physical triangle through the
mappings �fi of the edges, i = 1, 2, 3, presented in Eq.
(7) as:

xj
fi

:= �fi

⇣
⇠j
fi

⌘

We highlight that given a point x, xj
fi

corresponds to
the coordinates on the physical element of the projec-
tion j of the point to the edge fi, i = 1, 2, 3.

Finally, the new position of point x in the physical
triangle, denoted as x̂, is given in [28] as:

x̂ = �1

�
x1

f2 + x1
f3 � xv1

�
+ �2

�
x2

f1 + x2
f3 � xv2

�

+ �3

�
x3

f1 + x3
f2 � xv3

�

where xvj is the position of the jth vertex of the phys-
ical triangle. We highlight that the transfinite inter-
polation for triangles can be expressed as a function
of the isoparametric mapping of the edges and the lo-
cation of the vertices of the triangle.

In order to relocate the nodes in the interior of the
high-order physical faces, the steps detailed above are
applied to the nodes in the interior of the high-order
reference triangle, see Fig. 8(d). This procedure is
repeated for all the faces with a boundary node or
edge.

Lastly, we follow an analogous approach to modify the
position of the nodes in the interior of the boundary
tetrahedra. The boundary of a tetrahedron is com-
posed of four faces and six edges. These faces and
edges have already been curved with the procedures
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detailed above. Therefore, we relocate the interior
nodes according to the curved boundary already ac-
commodated to the edges and faces. Similarly to the
triangle case, the transfinite interpolation for tetrahe-
dra can be expressed as a function of the isoparamet-
ric mapping of the edges, the isoparametric mapping
of the faces, and the location of the vertices of the
tetrahedron.

Denote by T the set of vertices of a tetrahedron. We
define the entity fi1,...,ik as the entity of dimension
d � k, d = 3, with vertices given by the nodes T \
{i1, . . . , ik}. Note that the face opposed to node i is
denoted by fi, and the edge shared by the faces fi and
fk is fik. Given the three-dimensional isoparametric
mapping of degree p, �p, analogously to Eq. (7), we
denote the restriction to the face fi as �fi , and the
restriction to the edge fik as �fik .

Similarly to the two-dimensional case, consider a point
x in the physical tetrahedron, and denote by ⇠ and
� its preimage in the reference tetrahedron expressed
in cartesian and barycentric coordinates, respectively.
Now, denote by �j

fi
the projection of the point to the

face fi that has the jth component expressed as a func-
tion of the others. �j

fik
denotes the projection of the

point to the edge fik that has the jth component ex-
pressed as a function of the others. These projections
in the reference domain expressed in cartesian coordi-
nates are denoted by ⇠j

fi
and ⇠j

fik
, respectively.

Since these points are on the faces and edges of the
tetrahedron, they can be mapped onto the physical
element through the mappings �fi on the faces and
�fik on the edges as:

xj
fi

:= �fi

⇣
⇠j
fi

⌘
, xj

fik
:= �fik

⇣
⇠j
fik

⌘

Finally, the new position of point x in the physical
triangle, denoted as x̂, is given in [28] as:

x̂ = �1

�
x1

f2 + x1
f3 + x1

f4 � x1
f23 � x1

f24 � x1
f34 + xv1

�

+ �2

�
x2

f1 + x2
f3 + x2

f4 � x2
f13 � x2

f14 � x2
f34 + xv2

�

+ �3

�
x3

f1 + x3
f2 + x3

f4 � x3
f12 � x3

f14 � x3
f24 + xv3

�

+ �4

�
x4

f1 + x4
f2 + x4

f3 � x4
f12 � x4

f13 � x4
f23 + xv4

�

We remark that this method does not guarantee to re-
pair the invalid elements, neither ensures an increase of
the element quality. However, it is an explicit and fast
formulation, which in practice represents a good initial
condition for mesh curving methods when no geometry
is available [9, 29, 12, 30, 4]. In all the tested applica-
tions, see Sect. 6, the procedure improves significantly
the quality of the meshes. Once the TFI-based relo-
cation process is finalized, if low quality or inverted
elements are present, we perform the non-linear qual-
ity optimization procedure presented in [9].

Min Q # inv Time
Boundary 0.93 0 283 s
Volume (no TFI) 0 169 961 s
Volume (TFI) 0.80 0 367 s

1611 s

Table 1: Quality statistics of a mesh of polynomial
degree p = 4 for Sierra del Escudo (Spain).

6. RESULTS

In this section, we present several examples to illus-
trate the main features of the methods presented in
this work. As a proof of concept, the proposed al-
gorithms have been developed in Anaconda Python
[31]. The prototyping code is sequential (one exe-
cution thread) and non-vectorized. All the examples
have been run on a MacBook Pro (with one dual-core
Intel Core i5 CPU, a clock frequency of 2.3 GHz, and
a total memory of 16 GBytes).

Although not specified in the previous sections, if de-
sired, we perform a straight subdivision in straight
curves and planar surfaces. The straight subdivision
scheme does not modify the position of a node and
generates the new mid-edge nodes at the midpoint of
the edge to subdivide.

In all the examples, we validate both the high-order
boundary and volume meshes using the Jacobian-
based distortion measure proposed in [32, 8]. In partic-
ular, the quality of a high-order element is computed
with respect to its straight-sided original element in
the linear mesh.

6.1 Regular Mesh: Matching the C2 Sur-
rogate Topography

In this example, we illustrate the features of our
method with a linear mesh that discretizes a real to-
pography. The original data is provided as a level
curve map and thus, a CAD model is not available.

We consider a tetrahedral mesh composed of a dis-
cretization of a topography that defines the bottom
surface and a planar top surface located at the desired
height. The tetrahedral mesh is regular and is gener-
ated using the mesher presented in [1, 2]. Thus, all
the nodes of the surface mesh are regular. From the
linear mesh, we generate a curved high-order mesh of
polynomial degree four using the procedure detailed
in Sect. 5. Since the surface nodes are regular, the
high-order topography surface mesh is C2-continuous.

In Fig. 9(a), we show the initial linear mesh composed
of 4.8 · 105 nodes and 2.6 · 106 tetrahedra. The high-
order boundary mesh is composed of 1.1 · 106 nodes
and 1.4 · 105 triangles, does not contain tangled ele-
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(a) (b)

Figure 9: Curving of a tetrahedral mesh of Sierra del Escudo (Spain). Elements of the volume meshes are colored
with their elemental quality. (a) Linear mesh. (b) Curved mesh of polynomial degree p = 4 with no invalid elements.

Min Q # inv Time
Boundary 0.56 0 191 s
Volume (no TFI) 0 358 611 s
Volume (TFI) 0 24 237 s
Volume
(TFI + Optimization) 0.70 0 60 s

1099 s

Table 2: Quality statistics of a mesh of polynomial
degree p = 4 for a Falcon aircraft.

ments, and is generated in 283 seconds, see Table 1.
The curved high-order volume mesh is generated in
961 seconds and contains 169 inverted elements. The
process of accommodating the curvature of the bound-
ary detailed in Sect. 5.2 is performed to 4.1 · 105 ele-
ments abutting the boundary. This blending takes 367
seconds and untangles all the invalid elements, attain-
ing a minimum quality of 0.8. Finally, in Fig. 9(b), we
show the mesh of polynomial degree four composed of
2.9 · 107 nodes and 2.6 · 106 elements.

6.2 Sharp-to-smooth Modeling

In this example, we illustrate the capability of our
method to perform a sharp-to-smooth modeling in dif-
ferent regions of the geometry. In particular, we recast
some of the features entities present in the original
model, and thus provide a new model improving the
smoothness of the surrogate geometry. Each feature
vertex (node of the mesh), curve (set of edges of the
mesh) and surface (set of triangles of the mesh) is as-
sociated with a unique identifier. Therefore, to recast
a feature, it is enough to know its identifier.

We consider a linear tetrahedral mesh from a CAD
legacy model of a simplified Falcon aircraft. The
boundary entities are marked defining 28 surfaces, 54

curves, and 34 vertices. As shown in Fig. 10(a) and
Fig. 10(b), the main part of the fuselage is composed
of two surfaces and a curve. However, such curve is
not desirable since, ideally, we would desire a smooth
mesh along each section of the fuselage. Therefore, we
recast the curve indicating its unique identifier. The
first step consists in removing the curve from the list
of feature curves. Following, the two surfaces initially
incident to this curve, see Fig. 10(a), are merged by
identifying the id’s of the two surfaces as a unique one,
see Fig. 10(c). Thus, the whole fuselage is modeled as
a smoother virtual surface.

Similarly, we observe that each section of the wing is
described by two surfaces: one at the top and one at
the bottom; and two curves: one on the leading edge
and one on the trailing edge. In order to obtain a
model with an improved smoothness on the leading
edge, we decide to recast the feature curve describing
the leading edge. This way, the surface at the top
and the bottom are merged, and join smoothly in the
front part of the wing. We highlight that the curve
describing the trailing edge is maintained, and thus
this sharp feature is preserved.

Note that the lateral wing joins the fuselage in a profile
described by two curves (top and bottom) and two
vertex points (front and back). We recast the feature
vertex in the front. Therefore, this vertex is removed
from the list of feature vertices, and the two curves are
merged by identifying their id’s as a unique one. As
a result, we obtain a single closed curve with a sharp
endpoint on the trailing edge.

Similar changes are made in similar parts of the mesh
to generate a more convenient mesh model for flow
simulation, see Fig. 10(c) and Fig. 10(d). As high-
lighted in Sect. 5.1, once the id’s of all the features to
recast are identified, the recasting process is straight-
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(a) (b)

(c) (d)

Figure 10: Initial and final linear mesh model of a Falcon aircraft. Marks on boundary entities of the initial model:
(a) boundary triangles, and (b) curve and vertex features. Marks of the final model: (c) virtual surface features, (d)
curve and vertex features recast (gray) and preserved (black).

forward. Given the list of identifiers, the recasting
process consists in removing these features from the
list of features to preserve and automatically identify
the features adjacent to the recast feature as a single
one. We remark that the recasting of some of the ge-
ometry features does not modify the mesh, only the
number of vertex, curve, and surface features changes.
Specifically, the original model of the presented Fal-
con aircraft contains 34 vertex points, 54 curves, and
28 surfaces; while the model with the recast features
contains 20 vertices to preserve, 32 curves, and 20 sur-
faces.

In order to illustrate the di↵erence between these two
models, we take a close look at the leading edge of
the wing. In Fig. 11(a), we show the mesh of poly-
nomial degree p = 4 generated with the initial marks.
We observe a discontinuity in the normal vector of the
wing along the leading edge. In Fig. 11(b), we show
a mesh generated with a model in which the leading
edge has been recast. The nodes originally present in
the leading edge are still on the leading edge, but the
new points are generated to interpolate the almost ev-
erywhere C2-continuous surrogate geometry. Those re-
gions where the features have been recast are smoother
in the second mesh model than in the original one.
The leading edge now belongs to the interior of the
surface, and therefore, all the nodes interpolate a C1-
continuous surface.

A summary of the mesh quality can be found in Ta-
ble 2. The linear mesh is composed of 1.3 · 105 nodes
and 1.7 ·106 tetrahedra, and the volume mesh of poly-
nomial degree p = 4 is generated in 611 seconds. This
mesh, prior to the blending technique, contains 358
tangled elements. In this example, there are 3.0 · 105
boundary elements and the TFI reduces to 24 the num-
ber of invalid elements, that is, in 237 seconds a 93%
of the invalid elements have been untangled. Now, we
apply the optimization technique presented in [8, 9] to
optimize locally the quality of the inverted elements.
Since the mesh after the TFI is close to be optimal, it
is a good initial condition for the implicit optimization
and in 60 seconds the mesh becomes valid achieving a
minimum quality of 0.7. In Fig. 12, we show the valid
curved tetrahedral mesh of polynomial degree p = 4
composed of 1.8 · 107 nodes and 1.7 · 106 elements.

7. CONCLUDING REMARKS

The obtained results show that we can generate, from
an initial straight-edged mesh, successively refined
piece-wise linear, quadratic and quartic meshes, that
target smooth curves and surfaces, while preserving
the initially marked sharp features and smooth re-
gions. The interior of the obtained limit curves is of
class C2, and the interior of the surfaces is at least C1-
continuous, being of class C2 when the surface mesh is
structured.
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(a) (b)

Figure 11: Close look at the wing of a Falcon aircraft. Mesh of polynomial degree four with (a) the initial model,
and (b) the final model with the leading edge recast.

Figure 12: Curved tetrahedral mesh of polynomial degree p = 4 of a Falcon aircraft with no invalid elements.

Our method incorporates a unique sharp-to-smooth
modeling capability not fully available in standard
CAD packages. This capability allows removing sharp
features, i.e. vertices and curves, and smoothly merge
the incident entities, i.e. curves and surfaces. The
resulting surrogate geometry features C1-continuity
along the merging region. On the contrary, stan-
dard CAD packages use NURBS curve and surface
modeling and thus, do not feature all these sharp-
to-smooth modeling combinations. Note that with
NURBS, it is possible to impose di↵erent levels of
continuity between adjacent NURBS curves (surfaces)
sharing a common point (curve) but only when us-
ing non-trimmed NURBS. Furthermore, NURBS mod-
eling does not allow determining C1-continuity on a
point shared by more than four non-trimmed quadri-

lateral surfaces.

Recall that in topographical applications, it is stan-
dard to have a structured mesh representation, and
thus, this methodology leads to C2-continuous topog-
raphy surface meshes. We also found that since the
method is fast and explicit, even a non-vectorized Ana-
conda Python implementation, is competitive with
whole mesh curving methods that might need parallel
implementations for fine meshes.

The sharp curves and surfaces of the initial mesh deter-
mine the target geometries, and thus, when higher is
the refinement level, closer to the target geometries is
the resulting mesh. This capability of matching limit
curves and surfaces is required to perform convergence
studies to validate and verify the in-house flow solver.
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If after successive refinement, the computational ge-
ometry would not lead to a limit geometry, the flow
solution would not converge, too. Note that, after
successive refinement, the meshes become nested and
thus, the incorporation of a geometrical multigrid ca-
pability into the flow solver could be adequate.

The proportion of invalid elements is small compared
to the size of the meshes, and thus, we showed that it
can be fixed using local untangling and curving with-
out the need for a global solver. That would not be
the case for meshes for viscous laminar flow where
highly stretched elements are needed to resolve bound-
ary layers. Nevertheless, the meshes obtained with
the proposed approach are well suited for those ap-
plications where isotropically but graded meshes are
needed, such as in inviscid flow simulation and un-
steady large eddy simulation.

In conclusion, it is possible to refine and curve a vol-
ume mesh and obtain smooth surfaces while preserving
sharp features determined by vertices and polylines,
the latter targeting smooth limit curves. For mani-
folds with boundaries, only a straight-edged mesh with
boundary triangles marked with surface identifiers is
required. Then, the method automatically computes
the boundary curves and vertices from the triangle
marks. Finally, the technique is well-suited to curve
large quadratic and quartic meshes in low-memory
configurations, e.g. curving a topographic mesh com-
posed of two million and a half quartic elements using
a laptop equipped with 16 GBytes of main memory.
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